Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x>=0
PT đã cho <=>\(\left(\sqrt[3]{x^2+26}-3\right)+\left(\sqrt{x+3}-2\right)+\left(3\sqrt{x}-3\right)=0\)
<=>\(\frac{\left[\left(\sqrt[3]{x^2+26}\right)^3-27\right]}{\sqrt[3]{\left(x^2-26\right)^2}+3\sqrt[3]{x^2-26}+9}+\frac{\left[\left(\sqrt{x+3}\right)^2-4\right]}{\sqrt{x+3}+3}+\frac{3.\left[\left(\sqrt{x}\right)^2-1\right]}{\sqrt{x}+1}\)=0
<=>\(\frac{x^2-1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt{x^2+26}+9}+\frac{x-1}{\sqrt{x+3}+3}+\frac{3.\left(x-1\right)}{\sqrt{x}+1}=0\)
<=>(x-1)\(\left(\frac{x+1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt{x^2+26}+9}+\frac{1}{\sqrt{x+3}+3}+\frac{3}{\sqrt{x}+1}\right)=0\)
<=>x=1
ĐKXĐ: \(3\le x\le8\)
\(\Leftrightarrow-x^2+11x-24-\sqrt{-x^2+11x-24}-2=0\)
Đặt \(\sqrt{-x^2+11x-24}=a\ge0\)
\(a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)
\(\Rightarrow\sqrt{-x^2+11x-24}=2\Rightarrow-x^2+11x-24=4\)
\(\Leftrightarrow x^2-11x+28=0\Rightarrow\left[{}\begin{matrix}x=4\\x=7\end{matrix}\right.\)
a/ ĐKXĐ \(x\ge-\frac{3}{2}\)
Ta thấy cả 2 vế đều là số không âm nên ta bình phương 2 vế được
\(3x+5+2\sqrt{\left(2x+3\right)\left(x+2\right)}\le1\)
\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+2\right)}\le-3x-4\)( Điều kiện \(x\le-\frac{4}{3}\))
Tiếp tục bình phương rồi rút gọn ta được
\(x^2-4x-8\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le2-2\sqrt{3}\\x\ge2+2\sqrt{3}\end{cases}}\)
Kết hợp tất cả ta được
\(-\frac{3}{2}\le x\le2-2\sqrt{3}\)
Câu b với d cũng chỉ cần bình phương là ra
c/ Điều kiện: \(3\le x\le8\)
Đặt \(\sqrt{\left(x-3\right)\left(8-x\right)}=a\ge0\)
Thì bài toán thành
\(a-a^2+2>0\)
\(\Leftrightarrow-1\le a\le2\)
Tới đây thì đơn giản rồi
ĐK: \(x\ge-\dfrac{5}{2}\)
\(\Leftrightarrow3x^2-4x-4=2x+5\)
\(\Leftrightarrow3x^2-6x-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (thỏa mãn)
b.
ĐKXĐ: \(3\le x\le8\)
\(\Leftrightarrow-x^2+11x-24-\sqrt{-x^2+11x-24}-2=0\)
Đặt \(\sqrt{-x^2+11x-24}=t\ge0\)
\(\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{-x^2+11x-24}=2\)
\(\Leftrightarrow-x^2+11x-28=0\Rightarrow\left[{}\begin{matrix}x=7\\x=4\end{matrix}\right.\)
ĐKXĐ:...
\(\Leftrightarrow\sqrt{-x^2+11x-24}=-x^2+11x-26\) \(\left(-x^2+11x-26\ge0\right)\)
\(\sqrt{-x^2+11x-24}=t\left(t\ge0\right)\Rightarrow t^2=-x^2+11x-24\)
\(\Rightarrow t^2-2=-x^2+11x-26\)
\(\Rightarrow t=t^2-2\Leftrightarrow t^2-t-2=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow-x^2+11x-24=4\Leftrightarrow...\)
Bạn giải nốt và đối chiếu vs ĐKXĐ
\(pt\Leftrightarrow\sqrt{-x^2+11x-24}+x^2-11x+26=0\)
\(\Leftrightarrow\sqrt{-x^2+11x-24}+x^2-11x+24+2=0\)
Đặt \(t=\sqrt{-x^2+11x-24}\left(t\ge0\right)\)
\(pt\Leftrightarrow-t^2+t+2=0\)
\(\Rightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=-1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow-x^2+11x-24=4\Leftrightarrow-x^2+11x-28=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=7\end{matrix}\right.\)