K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

b, \(\sqrt{3x+7}-\sqrt{x+1}=2\)

\(\Rightarrow\sqrt{3x+7}=\sqrt{x+1}+2\)

\(\Rightarrow3x+7=\left(\sqrt{x+1}+2\right)^2\)

\(\Rightarrow3x+7=x+1+4\sqrt{x+1}+4\)

\(\Rightarrow2x+2=4\sqrt{x+1}\)

\(\Rightarrow\left(x+1\right)-2\sqrt{x+1}=0\)

\(\Rightarrow\sqrt{x+1}\left(\sqrt{x+1-2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=0\\\sqrt{x+1}-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

Câu a dài ngại làm :))

NV
21 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{-x^2+11x-24}=a\ge0\) pt trở thành:

\(a=a^2-2\Leftrightarrow a^2-a-2=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{-x^2+11x-24}=2\)

\(\Leftrightarrow-x^2+11x-28=0\Rightarrow\left[{}\begin{matrix}x=7\\x=4\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Bình phương hai vế của phương trình đã cho, ta được:

\(\begin{array}{l}\sqrt {31{x^2} - 58x + 1}  = \sqrt {10{x^2} - 11x - 19} \\ \Rightarrow 31{x^2} - 58x + 1 = 10{x^2} - 11x - 19\\ \Rightarrow 21{x^2} - 47x + 20 = 0\end{array}\)

\( \Rightarrow x = \frac{5}{3}\) hoặc \(x = \frac{4}{7}\)

Thay lần lượt các nghiệm trên vào phương trình đã cho, ta thấy không có nghiệm nào thỏa mãn

Vậy phương trình đã cho vô nghiệm

Chú ý khi giải: sau khi bình phương hai vế thì các bước giải tiếp theo chỉ được sử dụng dấu suy ra không được sử dụng dấu tương đương (vì tập nghiệm của chúng có thể không giống nhau)

NV
22 tháng 12 2020

ĐK: \(x\ge-\dfrac{5}{2}\)

\(\Leftrightarrow3x^2-4x-4=2x+5\)

\(\Leftrightarrow3x^2-6x-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (thỏa mãn)

b.

ĐKXĐ: \(3\le x\le8\)

\(\Leftrightarrow-x^2+11x-24-\sqrt{-x^2+11x-24}-2=0\)

Đặt \(\sqrt{-x^2+11x-24}=t\ge0\)

\(\Rightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=2\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{-x^2+11x-24}=2\)

\(\Leftrightarrow-x^2+11x-28=0\Rightarrow\left[{}\begin{matrix}x=7\\x=4\end{matrix}\right.\)

28 tháng 11 2019

ĐKXĐ:...

\(\Leftrightarrow\sqrt{-x^2+11x-24}=-x^2+11x-26\) \(\left(-x^2+11x-26\ge0\right)\)

\(\sqrt{-x^2+11x-24}=t\left(t\ge0\right)\Rightarrow t^2=-x^2+11x-24\)

\(\Rightarrow t^2-2=-x^2+11x-26\)

\(\Rightarrow t=t^2-2\Leftrightarrow t^2-t-2=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow-x^2+11x-24=4\Leftrightarrow...\)

Bạn giải nốt và đối chiếu vs ĐKXĐ

2 tháng 10 2019

cách giải á bạn

17 tháng 3 2019

Bé Của Nguyên giúp nè mẹ

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu a)

\(\sqrt{(x-3)(8-x)}+x^2-11x=0\)

\(\Leftrightarrow \sqrt{11x-x^2-24}+x^2-11x=0(*)\)

Đặt \(\sqrt{11x-x^2-24}=a(a\geq 0)\Rightarrow x^2-11x=-(a^2+24)\)

Khi đó \((*)\Leftrightarrow a-(a^2+24)=0\)

\(\Leftrightarrow a^2-a+24=0\Leftrightarrow (a-\frac{1}{2})^2+\frac{95}{4}=0\) (vô lý)

Vậy pt vô nghiệm.

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu b)

ĐKXĐ:.........

\(\sqrt{7x-13}-\sqrt{3x-9}=\sqrt{5x-27}\)

\(\Rightarrow (\sqrt{7x-13}-\sqrt{3x-9})^2=5x-27\)

\(\Leftrightarrow 10x-22-2\sqrt{(7x-13)(3x-9)}=5x-27\)

\(\Leftrightarrow 5(x+1)=2\sqrt{(7x-13)(3x-9)}\)

\(\Rightarrow 25(x+1)^2=4(7x-13)(3x-9)\)

\(\Leftrightarrow 25(x^2+2x+1)=84x^2-408x+468\)

\(\Leftrightarrow 59x^2-458x+443=0\)

\(\Rightarrow x=\frac{229\pm 8\sqrt{411}}{59}\) . Kết hợp với ĐKXĐ suy ra \(x=\frac{229+8\sqrt{411}}{59}\)

DD
26 tháng 12 2022

ĐKXĐ: \(\left\{{}\begin{matrix}9y-5\ge0\\x+y\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y\ge\dfrac{5}{9}\\x+y\ge0\end{matrix}\right.\).

Phương trình (1) tương đương với: 

\(\left(x^2+y^2\right)\left(x+y\right)-\left(x+y\right)+2xy=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)-\left(x^2+y^2\right)+x^2+y^2-\left(x+y\right)+2xy=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)^2-\left(x+y\right)=0\)

\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-1\right)+\left(x+y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2+x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\x^2+y^2+x+y=0\end{matrix}\right.\)

- Với \(x^2+y^2+x+y=0\) có \(x+y=0\) (theo điều kiện) 

suy ra \(x=y=0\) (không thỏa mãn).

- Với \(x+y-1=0\Leftrightarrow y=1-x\) thế vào phương trình (2) ta được: 

\(x^2+11x+6=2\sqrt{9\left(1-x\right)-5}+\sqrt{1}\)

\(\Leftrightarrow x^2+11x+5-2\sqrt{14-9x}=0\)

\(\Rightarrow\left(x^2+11x+5\right)^2=4\left(14-9x\right)\)

\(\Leftrightarrow x^4+22x^3+131x^2+146x-31=0\)

Bạn giải phương trình trên, thử lại ta được nghiệm của bài toán. 

Đáp án ra số khá xấu nên thầy không ghi ra đây. 

Em có thể tham khảo cách làm nhé.