Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(PT\Leftrightarrow x\left(2x-7\right)-4\left(x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{7}{2};4\right\}\)
e) \(PT\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\3x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{7;1\right\}\)
f) \(PT\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{1;3\right\}\)
3,6 – 0,5(2x + 1) = x – 0,25(2 – 4x)
⇔ 3,6 – x – 0,5 = x – 0,5 + x ⇔ 3,6 – 0,5 + 0,5 = x + x + x
⇔ 3,6 = 3x ⇔ 1,2
Phương trình có nghiệm x = 1,2
ĐKXĐ: ...
\(\left(\dfrac{x-1}{x+2}\right)^2-4\left(\dfrac{x+2}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}=a\\\dfrac{x+2}{x-3}=b\end{matrix}\right.\)
\(\Rightarrow a^2-4b^2+3ab=0\Leftrightarrow\left(a-b\right)\left(a+4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}-\dfrac{x+2}{x-3}=0\\\dfrac{x-1}{x+2}+\dfrac{4x+8}{x-3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)-\left(x+2\right)^2=0\\\left(x-\right)\left(x-3\right)+4\left(x+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
giải pt sau \(\left(\dfrac{x+1}{x-2}\right)^2-3\left(\dfrac{2x-4}{x-4}\right)^2+\dfrac{x+1}{x-4}=0\)
ĐKXĐ: \(x\ne\left\{2;4\right\}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x+1}{x-2}=a\\\dfrac{x-2}{x-4}=b\end{matrix}\right.\) \(\Rightarrow\dfrac{x+1}{x-4}=ab\)
Phương trình trở thành:
\(a^2-12b^2+ab=0\)
\(\Leftrightarrow a^2+4ab-3ab-12b^2=0\)
\(\Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-2}-\dfrac{3\left(x-2\right)}{x-4}=0\\\dfrac{x+1}{x-2}+\dfrac{4\left(x-2\right)}{x-4}=0\end{matrix}\right.\)
Bạn tự quy đồng và hoàn thành phần còn lại nhé
\(\Leftrightarrow\left(x+1\right)^2=4\left(x-1\right)^4\).Xét 2 trường hợp:
-Với x>=1.PT tương đương
\(x+1=2\left(x-1\right)^2\)
\(\Leftrightarrow x+1=2x^2-4x+2\)
\(\Leftrightarrow2x^2-5x+1=0\)
\(\Leftrightarrow2\left(x^2-\frac{5}{2}x+\frac{25}{8}\right)-\frac{21}{4}=0\).Giải típ nhá đưa 2 hiệu 2 bình phương
-Với x<1.PT tương đương
\(x+1=-2\left(x-1\right)^2\)
\(\Leftrightarrow x+1=-2x^2+4x-2\)
\(\Leftrightarrow-2x^2+3x-3=0\Leftrightarrow2x^2-3x+3=0\)
\(\Leftrightarrow\left(2x^2-3x+\frac{9}{8}\right)+\frac{15}{8}=0\Leftrightarrow\left(\sqrt{2}x-\frac{3}{2\sqrt{2}}^{ }\right)^2+\frac{15}{8}>0\)(vô nghiệm)
\( {\left( {x + 1} \right)^2} = 4{\left( {{x^2} - 2x + 1} \right)^2}\\ \Leftrightarrow {\left( {x + 1} \right)^2} = 4{\left[ {{{\left( {x - 1} \right)}^2}} \right]^2}\\ \Leftrightarrow \dfrac{{{{\left( {x + 1} \right)}^2}}}{{{{\left( {x - 1} \right)}^4}}} = 4\\ \Leftrightarrow {\left[ {\dfrac{{x + 1}}{{{{\left( {x - 1} \right)}^2}}}} \right]^2} = 4\\ \Leftrightarrow \dfrac{{x + 1}}{{{{\left( {x - 1} \right)}^2}}} = 2\\ \Leftrightarrow x + 1 = 2{\left( {x - 1} \right)^2}\\ \Leftrightarrow x + 1 = 2{x^2} - 4x + 2\\ \Leftrightarrow 2{x^2} - 5x + 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{{5 - \sqrt {17} }}{4}\\ x = \dfrac{{5 + \sqrt {17} }}{4} \end{array} \right.\)
a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Lời giải :
Đặt \(\hept{\begin{cases}x^2+3x-4=a\\2x^2-5x+3=b\end{cases}}\)
\(\Rightarrow a+b=\left(x^2+3x-4\right)+\left(2x^2-5x+3\right)=3x^2-2x-1\)
Khi đó phương trình đã cho trở thành :
\(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow a^3+b^3=a^3+b^3+3ab.\left(a+b\right)\)
\(\Leftrightarrow3ab.\left(a+b\right)=0\) \(\Rightarrow\orbr{\begin{cases}a+b=0\\ab=0\end{cases}}\)
+) Với \(a+b=0\Rightarrow3x^2-2x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}\)
+) Với \(ab=0\Rightarrow\left(x^2+3x-4\right).\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+3x-4=0\left(1\right)\\2x^2-5x+3=0\left(2\right)\end{cases}}\)
Pt (1) \(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
Pt (2) \(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}\)
Vạy phương trình đã cho có tập nghiệm \(S=\left\{-4,-\frac{1}{3},1,\frac{3}{2}\right\}\)
\(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)
\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\)
\(\Leftrightarrow8x=-16\)
\(\Leftrightarrow x=-2\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)
\(\Leftrightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
=>x=0(nhận) hoặc x=3(loại)
đk : x khác -1 ; 3
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x\Leftrightarrow2x^2-2x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Leftrightarrow x=0;x=3\left(ktm\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-1=14\\x^2-2x-1=-14\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-15=0\\x^2-2x+13=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)\left(x+3\right)=0\\\left(x-1\right)^2+12=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)