\(\frac{1}{x^2}\))-3(x+\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 5 2020

c/

\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt \(x^2+3x=t\)

\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)

Đặt \(x^2-x=t\)

\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)

NV
13 tháng 5 2020

a/ ĐKXĐ: ...

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(2\left(t^2-2\right)-3t+2=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)

b/ Với \(x=0\) ko phải nghiệm

Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)

\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)

\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)

c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t

các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm

19 tháng 2 2018

b)\(9\left(x-2\right)^2-4\left(x-1\right)^2=\left(9x^2-36x+36\right)-\left(4x^2+8x-4\right)\)

\(=9x^2-36x+36-4x^2+8x-4\)

\(=5x^2-28x+32\)

\(=\left(x-5\right)\left(5x-8\right)\)

\(\hept{\begin{cases}x-5=0\\5x-8=0\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\x=\frac{8}{5}=1\frac{3}{5}\end{cases}}\)

19 tháng 2 2018

a) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)

\(\left(x^2+2x+1\right)-\left(4x^2-8x+4\right)=0\)

\(-3x^2+10x-3=0\)

\(\left(3-x\right)\left(3x-1\right)=0\)

\(\hept{\begin{cases}3-x=0\\3x-1=0\end{cases}}\)

\(\hept{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)

29 tháng 8 2019

a) ĐK: \(x\inℝ\).

Đặt \(\sqrt{x^2-3x+4}=a>0\)

\(x^2-5x+4-\left(2x-1\right)a=0\)

\(\Leftrightarrow a^2-\left(2x-1\right)a-2x=0\)

\(\Leftrightarrow-\left(a+1\right)\left(2x-a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-1\left(L\right)\\2x=a\left(C\right)\end{cases}}\)

Xét \(2x=a\Leftrightarrow\hept{\begin{cases}x>0\\a^2=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\-3x^2-3x+4=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{57}}{6}\) ( đã loại 1 nghiệm vì ko t/m x> 0)

P/s: em ko chắc:v

NV
13 tháng 4 2020

a/ \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b/ \(\Delta=9+8=17\)

Phương trình có 2 nghiệm pb: \(\left\{{}\begin{matrix}x_1=\frac{3-\sqrt{17}}{4}\\x_2=\frac{3+\sqrt{17}}{4}\end{matrix}\right.\)

c/ \(\Delta=\left(2+\sqrt{3}\right)^2-8\sqrt{3}=\left(2-\sqrt{3}\right)^2\)

Phương trình có 2 nghiệm pb:

\(\left\{{}\begin{matrix}x_1=\frac{2+\sqrt{3}+2-\sqrt{3}}{2}=2\\x_2=\frac{2+\sqrt{3}-\left(2-\sqrt{3}\right)}{2}=\sqrt{3}\end{matrix}\right.\)

d/ \(\Delta=\left(2m-1\right)^2-4\left(m^2+m\right)=1\)

Phương trình có 2 nghiệm pb:

\(\left\{{}\begin{matrix}x_1=\frac{2m+1+1}{2}=m+1\\x_2=\frac{2m+1-1}{2}=m\end{matrix}\right.\)

1 tháng 8 2017

\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)

\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)

\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)

1 tháng 8 2017

Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d

b) \(2x^4+5x^3+x^2+5x+2=0\)

Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:

\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)

Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)

\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)

\(\Leftrightarrow2y^2+5y-3=0\)

PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3

Với y=1/2 thì không tìm được x

Với y=-3 thì tìm được 2 nghiệm, tự giải

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Bài 6:

ĐK: $x\geq \frac{2}{3}$

Đặt $\sqrt{4x+1}=a; \sqrt{3x-2}=b(a,b\geq 0)$

PT trở thành:

$a-b=a^2-b^2$

$\Leftrightarrow (a-b)(a+b)-(a-b)=0$

$\Leftrightarrow (a-b)(a+b-1)=0$

Nếu $a-b=0\Leftrightarrow 4x+1=3x-2\Leftrightarrow x=-3$ (loại vì không thỏa ĐKXĐ)

Nếu $a+b-1=0$

$\Leftrightarrow b=1-a$

$\Leftrightarrow \sqrt{3x-2}=1-\sqrt{4x+1}$

$\Rightarrow 3x-2=4x+2-2\sqrt{4x+1}$

$\Leftrightarrow x+4=2\sqrt{4x+1}$

$\Rightarrow (x+4)^2=4(4x+1)$

$\Leftrightarrow x^2-8x+12=0\Leftrightarrow x=6$ hoặc $x=2$

Vậy.......

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Bài 5:

ĐK: $x\geq -2$

PT $\Leftrightarrow 3\sqrt{(x+2)(x^2-2x+4)}=2x^2-3x+10$

Đặt $\sqrt{x+2}=a; \sqrt{x^2-2x+4}=b(a,b\geq 0)$

Khi đó PT trở thành:
$3ab=2b^2+a^2$

$\Leftrightarrow a^2-3ab+2b^2=0$

$\Leftrightarrow a(a-b)-2b(a-b)=0$

$\Leftrightarrow (a-b)(a-2b)=0$
Nếu $a-b=0\Rightarrow a^2-b^2=0$

$\Leftrightarrow x+2-(x^2-2x+4)=0$

$\Leftrightarrow x^2-3x+2=0\Rightarrow x=1$ hoặc $x=2$ (thỏa mãn)

Nếu $a-2b=0\Rightarrow 4b^2-a^2=0$

$\Leftrightarrow 4(x^2-2x+4)-(x+2)=0$

$\Leftrightarrow 4x^2-9x+14=0$ (pt vô nghiệm)

Vậy.........