Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(y^2+4^x+2y-2^{x+1}+2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(2^{2x}-2^{x+1}+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
Mà \(\hept{\begin{cases}\left(y+1\right)^2\ge0\\\left(2^x-1\right)^2\ge0\end{cases}}\forall x,y\)
\(\Rightarrow\left(y+1\right)^2+\left(2^x-1\right)^2\ge0\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(y+1\right)^2=0\\\left(2^x-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\2^x=1=2^0\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy \(\left(x;y\right)=\left(0;-1\right)\)
Nước ta có nhiều tấm gương vượt lên số phận, học tập thành công (như anh Nguyễn ngọc kí, ...)Lấy nhan đề là ...
Tả một người thân (ông, bà, cha, mẹ, anh, chị, em... của em) - Loigiaihay
\(ĐKXĐ:\hept{\begin{cases}2x+y+1\ge0\\x+y\ge0\end{cases}}\)
Hệ \(\hept{\begin{cases}\sqrt{2x+y+1}-\sqrt{x+y}=1\\3x+2y=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{2x+y+1}=1+\sqrt{x+y}\\y=\frac{4-3x}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+y+1=1+2\sqrt{x+y}+x+y\\y=\frac{4-3x}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\sqrt{x+y}\\y=\frac{4-3x}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2=4x+4y\\y=\frac{4-3x}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\left(1\right)\\x^2=4x+4.\frac{4-3x}{2}\left(2\right)\\y=\frac{4-3x}{2}\left(3\right)\end{cases}}\)
Giải (2) :
\(\left(2\right)\Leftrightarrow x^2=4x+8-6x\)
\(\Leftrightarrow x^2+2x-8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
Kết hợp với (1) được x = 2
Thay x = 2 vào (3) được y = -1
Thấy x = 2 ; y = -1 t/m ĐKXĐ
Vậy hệ có nghiệm \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
Ta có : \(x^3-y^3-2y^2-3y-1=0\)
\(\Leftrightarrow x^3-\left(y^3+2y^2+3y+1\right)=0\)
\(\Leftrightarrow x^3=y^3+2y^2+3y+1\)
Lại có :
\(y^3+2y^2+3y+1=\left(y^3-3y^2+3y-1\right)+5y^2+2=\left(y-1\right)^3+5y^2+2\)
Do \(5y^2\ge0\forall y\Rightarrow\left(y-1\right)^3+5y^2+2\ge\left(y-1\right)^3+2>\left(y-1\right)^3\left(1\right)\)\(y^3+2y^2+3y+1=\left(y^3+3y^2+3y+1\right)-y^2=\left(y+1\right)^3-y^2\)
Do \(y^2\ge0\forall y\Rightarrow\left(y+1\right)^3-y^2\le\left(y+1\right)^3\forall y\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left(y-1\right)^3< x^3\le\left(y+1\right)^3\)
\(\Rightarrow\left[{}\begin{matrix}x^3=\left(y+1\right)^3\left(3\right)\\x^3=y^3\left(4\right)\end{matrix}\right.\)
Từ ( 3 )
\(\Rightarrow x^3=y^3+3y^2+3y+1\)
\(\Rightarrow y^3+2y^2+3y+1=y^3+3y^2+3y+1\)
\(\Rightarrow y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow\left(y+1\right)^3=1\)
\(\Rightarrow x^3=1\)
\(\Rightarrow x=1\)
Từ ( 4 )
\(\Rightarrow y^3+2y^2+3y+1=y^3\)
\(\Rightarrow2y^2+3y+1=0\)
\(\Rightarrow2y^2+2y+y+1=0\)
\(\Rightarrow2y\left(y+1\right)+y+1=0\)
\(\Rightarrow\left(2y+1\right)\left(y+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y+1=0\\y+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-\dfrac{1}{2}\left(L;y\in Z\right)\\y=-1\end{matrix}\right.\)
\(\Rightarrow y^3=-1=x^3\)
\(\Rightarrow x=-1\)
Vậy \(\left(x,y\right)\in\left\{\left(-1,-1\right);\left(1,0\right)\right\}\)
(2y - 3)(y + 1) + y(y - 2) = 3(y + 2)2
<=> 2y2 - y - 3 + y2 - 2y = 3y2 + 12y + 12
<=> 3y2 - 3y - 3 - 3y2 - 12y - 12 = 0
<=> -15y - 15 = 0
<=> -15y = 15
<=> y = -1
Vậy S = {-1}
\(\left(2y-3\right)\left(y+1\right)+y\left(y-2\right)=3\left(y+2\right)^2\)
\(3y^2-3y-3=3y^2+12y+12\)
\(3y^2-3y-3-3y^2-12y-12=0\)
\(-15y-15=0\)
\(-15y=15\)
\(y=-1\)