\(x^2+xy-2008x-2009y-2010=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

                  \(x^2+xy-2008x-2009y-2010=0\)

\(\Leftrightarrow\)\(x^2+xy+x-2009x-2009y-2009=1\)

\(\Leftrightarrow\)        \(x\left(x+y+1\right)-2009\left(x+y+1\right)=1\)

\(\Leftrightarrow\)                           \(\left(x-2009\right)\left(x+y+1\right)=1\)

\(\Rightarrow\)\(\left(x-2009\right)=1\)và  \(\left(x+y+1\right)=1\)\(\Rightarrow\)\(x=2010;y=-2010\)

và     \(\left(x-2009\right)=-1\) và \(\left(x+y+1\right)=-1\)\(\Rightarrow\)\(x=2008;y=-2010\).

6 tháng 2 2018

Ta có:

\(x^2+xy-2008x-2009y-2010=0\)

\(\Leftrightarrow x^2+xy+x-2009x-2009y-2009=1\)

\(\Leftrightarrow x\left(x+y+1\right)-2009\left(x+y+1\right)=1\)

\(\Leftrightarrow\left(x+y+1\right)\left(x-2009\right)=1\)

Xét trường hợp:

\(\left(1\right)\left\{{}\begin{matrix}x-2009=1\\x+y+1=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2010\\y=-2010\end{matrix}\right.\)

\(\left(2\right)\left\{{}\begin{matrix}x-2009=-1\\x+y+1=-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2008\\y=-2010\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(2010;-2010\right);\left(2008;-2010\right)\)

24 tháng 9 2017

Ta có : \(x^2+y^2+xy=x^2y^2\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Mà \(x^2y^2\le xy\left(xy+1\right)\le\left(xy+1\right)^2\)

Không tồn tại 1 số chính phương giữa 2 số chính phương để xy(xy+1) là 1 số chính phương thì nó phải bằng 1 trong hai số đó .

\(\Rightarrow xy\left(xy+1\right)=0\) 

\(\Rightarrow\left(x,y\right)=\left(0,0\right);\left(1,-1\right);\left(-1,1\right)\)

24 tháng 9 2017

\(x^2+y^2+xy=x^2y^2\)

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 

Thân_mưa ^^

31 tháng 1 2016

Theo ht Viet :

\(\int^{x1+x2=\frac{\sqrt{85}}{4}}_{x1x2=\frac{21}{16}}\)

Xét \(x1^3-x2^3=\left(x1-x2\right)^3-3x1x2\left(x1-x2\right)\) (1) 

(+) tính x1  - x2 

TA có \(\left(x1-x2\right)^2=x1^2-2x1x2+x2^2=\left(x1+x2\right)^2-4x1x2=\left(\frac{\sqrt{85}}{4}\right)^2-4\left(\frac{21}{16}\right)\)

Rút gọn => x1 - x2 sau đó thay vào (1) 

31 tháng 1 2016

b) Xét a = 0 pt <=> x - 2 = 0 => x = 2 ( TM ) 

Xét a khác 0 pt là pt bậc 2 

\(\Delta=\left(2a-1\right)^2-4a\left(a-2\right)=4a^2-4a+1-4a^2+8a=4a+1\)

LẬp luận như bài lần trước ta có a = n(n+1) với n nguyên 

3 tháng 9 2016

Ta có x2 + xy + y2 = xy2

<=> (x + y)= xy(xy + 1) 

Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2

Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0

Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1) 

5 tháng 9 2016

sao ra x=y đc nhỉ 
pt đã cho có dạng  \(4x^2+8xy+4y^2+1=4x^2y^2+4xy+1\Leftrightarrow4\left(x+y\right)^2-\left(2xy-1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy-1\right)\left(2x+2y-2xy+1\right)=-1\)
Đến đây lập bảng nhé => được x y

\(x^2+xy+y^2=x^2y^2.\)

+ x =0; y =0  là nghiệm

+ x y khác  0

\(\frac{x}{y}+\frac{y}{x}=xy-1\in Z\)

=> x =y 

=> 3x2 =x4 => x2 = 3 loại

Vậy x = y =0 là nghiệm duy nhất

26 tháng 1 2016

(*) với k = 0 pt <=> \(x-2=0\Leftrightarrow x=2\) ( TM )

(*) với k khác 0 . pt là pt bậc 2 

\(\Delta=\left(1-2k\right)^2-4k\left(k-2\right)=4k^2-4k+1-4k^2+8k=4k+1\)

Để pt có nghiệm hữu tỉ khi 4k + 1 là số chính phương 

=> \(4k+1=a^2\) (1) Vì 4k + 1 là số lẻ => a^2 là số lẻ => a là số lẻ => a = 2n + 1 ( n thuộc Z ) thay vào (1) ta có 

\(4k+1=\left(2n+1\right)^2=4n^2+4n+1\Leftrightarrow4k=4n\left(n+1\right)\Leftrightarrow k=n\left(n+1\right)\)

Vậy với k = n(n+1) thì pt luôn có nghiệm hữu tỉ ( n thuộc Z ) 

26 tháng 1 2016

khó wa !!!!!!!!!!!!!!!!!!!!!!!!!!

mình ko giải được!!!!!!!!!!!!!!!!!!!!!!!

bạn tich cho minh nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!