K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

\(x^2+xy-2x-y-19=0\)

\(pt\Leftrightarrow\left(xy-y\right)+\left(x^2-2x+1\right)=20\)

\(\Leftrightarrow y\left(x-1\right)+\left(x-1\right)^2=20\)

\(\Leftrightarrow\left(x-1\right)\left(y+x-1\right)=20\)

16 tháng 9 2023

\(x^2+xy-2017x-2018y-2019=0\)

\(x^2+xy+x-2018x-2018y-2018-1=0\)

\(x\left(x+y+1\right)-2018\left(x+y+1\right)=1\)

\(\left(x-2018\right)\left(x+y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=-y-1\end{matrix}\right.\)

Đến đây rồi e thay vào phương trình dùng delta giải phương trình bậc 2 nha

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Bài 4:

\(x^4y-x^4+2x^3-2x^2+2x-y=1\)

\(\Leftrightarrow y(x^4-1)-(x^4-2x^3+2x^2-2x+1)=0\)

\(\Leftrightarrow y(x^2+1)(x^2-1)-[x^2(x^2-2x+1)+(x^2-2x+1)]=0\)

\(\Leftrightarrow y(x^2+1)(x-1)(x+1)-(x-1)^2(x^2+1)=0\)

\(\Leftrightarrow (x^2+1)(x-1)[y(x+1)-(x-1)]=0\)

\(\Rightarrow \left[\begin{matrix} x-1=0(1)\\ y(x+1)-(x-1)=0(2)\end{matrix}\right.\)

Với $(1)$ ta thu được $x=1$, và mọi $ý$ nguyên.

Với $(2)$

\(y(x+1)=x-1\Rightarrow y=\frac{x-1}{x+1}\in\mathbb{Z}\)

\(\Rightarrow x-1\vdots x+1\)

\(\Rightarrow x+1-2\vdots x+1\Rightarrow 2\vdots x+1\)

\(\Rightarrow x+1\in\left\{\pm 1; \pm 2\right\}\Rightarrow x\in\left\{-2; 0; -3; 1\right\}\)

\(\Rightarrow y\left\{3;-1; 2; 0\right\}\)

Vậy \((x,y)=(-2,3); (0; -1); (-3; 2); (1; t)\) với $t$ nào đó nguyên.

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Bài 1:

\(x^2+y^2-8x+3y=-18\)

\(\Leftrightarrow x^2+y^2-8x+3y+18=0\)

\(\Leftrightarrow (x^2-8x+16)+(y^2+3y+\frac{9}{4})=\frac{1}{4}\)

\(\Leftrightarrow (x-4)^2+(y+\frac{3}{2})^2=\frac{1}{4}\)

\(\Rightarrow (x-4)^2=\frac{1}{4}-(y+\frac{3}{2})^2\leq \frac{1}{4}<1\)

\(\Rightarrow -1< x-4< 1\Rightarrow 3< x< 5\)

\(x\in\mathbb{Z}\Rightarrow x=4\)

Thay vào pt ban đầu ta thu được \(y=-1\) or \(y=-2\)

Vậy.......

NV
22 tháng 3 2023

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-8\end{matrix}\right.\)

\(M=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)

\(=x_1+x_2-2x_1x_2\)

\(=-2-2.\left(-8\right)=14\)