Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Ta có : | x - 2011 |2011 + | x - 2012 |2012 \(\ge\)0
Mà | x - 2011 |2011 + | x - 2012 |2012 = 1
xét 2 TH :
TH1 : | x - 2011 |2011 = 0 ; | x - 2012 |2012 = 1
\(\Rightarrow\)x = 2011
TH2 : | x - 2011 |2011 = 1 ; | x - 2012 |2012 = 0
\(\Rightarrow\)x = 2012
vậy x = 2011 hoặc x = 2012
+) Xét x < 2011 thì \(x-2012< -1\)
\(\Rightarrow\left|x-2012\right|^{2012}>1\)
Mà \(\left|x-2011\right|^{2011}>0\forall x< 2011\)
\(\Rightarrow VT>1\left(vl\right)\)
+) Xét x = 2011 thì thỏa mãn
+) Xét 2011 < x < 2012 thì \(\hept{\begin{cases}0< x-2011< 1\\-1< x-2012< 0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2011\right|^{2011}< x-2011\\\left|x-2012\right|^{2012}< 2012-x\end{cases}}\)
\(\Rightarrow VT< 1\left(vl\right)\)
+) Xét x = 2012 thì thỏa mãn
+) Xét x > 2012 thì \(x-2011>1\)
\(\Rightarrow\left|x-2011\right|^{2011}>1\)
và \(\left|x-2012\right|^{2012}>0\forall x>2012\)
\(\Rightarrow VT>1\)(vl)
Vậy tập nghiệm S = {2011;2012}
\(\left(x^2+4\right)^2+5x\left(x^2+4\right)+4x^2=0\)
\(\Leftrightarrow\) \(\left(x^2+4\right)^2+4x\left(x^2+4\right)+x\left(x^2+4\right)+4x^2=0\)
\(\Leftrightarrow\)\(\left(x^2+4\right)\left(x^2+4+4x\right)+x\left(x^2+4+4x\right)=0\)
\(\Leftrightarrow\)\(\left(x+2\right)^2\left(x^2+4+x\right)=0\)
\(\Leftrightarrow\)\(x+2=0\) (do x2 + x + 4 = (x + 0,5)2 + 3,75 > 0)
\(\Leftrightarrow\)\(x=-2\)
Vậy...
0
(x-2011).(3x^2+2012)=0
<=>x-2011=0 hoặc 3x^2+2012=0
<=>x=2011. , 3x^2=-2012<=>x^2=-2012/3 vô lý=>x vô nghiệm
S={2011}