Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đã cho tương đương
\(\Leftrightarrow\left|\left(x-y\right)^2+2\left(x-y\right)+1+x-2\right|+\left|x^2-3x+2\right|=2\left(x-2\right)\) (1)
Vế trái không âm => x \(\ge\)2
\(\Leftrightarrow\left|\left(x-y+1\right)^2+\left(x-2\right)\right|+\left|\left(x-2\right)\left(x-1\right)\right|=2\left(x-2\right)\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)+\left(x-2\right)\left(x-1\right)=2\left(x-2\right)\) \(\left(x\ge2\right)\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y+1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)Thỏa mãn điều kiện \(\ge\)2
Vậy pt có nghiệm \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)
mày thử thay x=2 với y=3 vào pt đi xem đúng ko :)) thằng óc lz ngu vclll :))
\(|x^2+1|-(x^2-4x+4)=3x\\\Rightarrow x^2+1-x^2+4x-4=3x(\text{vì }x^2 + 1 > 0 \forall x )\\\Leftrightarrow 4x-3=3x\\\Leftrightarrow4x-3x=3\\\Leftrightarrow x=3\)
Vậy nghiệm của phương trình là \(x=3\).
Do \(x^2+1>0;\forall x\Rightarrow\left|x^2+1\right|=x^2+1\)
Phương trình trở thành:
\(x^2+1-\left(x^2-4x+4\right)=3x\)
\(\Leftrightarrow4x-3=3x\)
\(\Leftrightarrow x=3\)
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Bài 1:
Đặt \(\left(x+y;y+z;z+x\right)=\left(a;b;c\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)
\(P=\frac{1}{2a+b+c}+\frac{1}{a+b+2c}+\frac{1}{a+2b+c}\)
\(P=\frac{1}{a+a+b+c}+\frac{1}{a+b+c+c}+\frac{1}{a+b+b+c}\)
\(\Rightarrow P\le\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{6}{4}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\) hay \(x=y=z=\frac{1}{4}\)
Bài 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\\left(x+y\right)\left(x^2+y^2-xy\right)=5x+15y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\5\left(x+y\right)=5x+15y\end{matrix}\right.\)
\(\Rightarrow10y=0\Rightarrow y=0\)
Thay vào pt đầu: \(x^2=5\Rightarrow x=\pm\sqrt{5}\)
Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\sqrt{5};0\right);\left(-\sqrt{5};0\right)\)
1. x2 + 4y2 + x2y2 - 8xy + 4 = 0
⇔ x2 - 4xy + 4y2 + x2y2 - 4xy + 4 = 0
⇔ ( x - 2y )2 + (xy - 2 )2 = 0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\xy-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y\\xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm1\end{matrix}\right.\)
⇒ x + y = 3 hoặc x + y = - 3
chờ 4 năm nữa em trả lời cho nha?
khó vãi ms nghĩ đc thế này ko biết đúng ko
\(\Leftrightarrow\left|y^2+\left(-2x-2\right)y+x^2-3x-1\right|+4=\left|x^2+3x+2\right|+2x\)\(\Rightarrow\left|y^2+\left(-2x-2\right)y+x^2-3x-1\right|-\left|x^2-3x+2\right|-2x+4=0\)