![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-2x-1+\frac{2}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2-2+\frac{1}{x^2}\right)-2\left(x-\frac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2-2\left(x-\frac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}-1\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{x}-1=0\)
Làm nôt
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: x khác -1
Đặt \(\frac{x}{\left(x+1\right)}=y\), ta có:
\(2y^2-5y+3=0\)
\(\Leftrightarrow2y^2-2y-3y+3=0\)
\(\Leftrightarrow2y\left(y-1\right)-3\left(y-1\right)=0\)
\(\Leftrightarrow\left(y-1\right)\left(2y-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=1\\y=\frac{3}{2}\end{cases}}\)
Sau đó thay từng giá trị của y vào \(\frac{x}{x+1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2.
a, Với m\(=1\Rightarrow x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b. Ta có \(\Delta=b^2-4ac=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)
\(\Rightarrow\)phương trình luôn có 2 nghiệm \(x_1,x_2\)
c, Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=m-1\end{cases}}\)
A=\(\frac{2.x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=\frac{2.x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2+2x_1x_2}\)
\(=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}=\frac{\left(m^2+2\right)-\left(m^2-2m+1\right)}{m^2+2}\)
\(=1+\frac{-\left(m-1\right)^2}{m^2+2}\)
Ta thấy \(\frac{-\left(m-1\right)^2}{m^2+2}\le0\Rightarrow1+\frac{-\left(m-1\right)^2}{m^2+2}\le1\)
\(\Rightarrow MaxA=1\)
Dấu bằng xảy ra\(\Leftrightarrow\) \(m-1=0\Leftrightarrow m=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow x^2-1+1-\sqrt{2x^2-3x+2}-\frac{3}{2}\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)+\frac{\left(2x-1\right)\left(x-1\right)}{1+\sqrt{2x^2-3x+2}}-\frac{3}{2}\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-\frac{1}{2}+\frac{2\left(x-\frac{1}{2}\right)}{1+\sqrt{2x^2-3x+2}}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-\frac{1}{2}\right)\left(1+\frac{2}{1+\sqrt{2x^2-3x+2}}\right)=0\)
Do \(\left(1+\frac{2}{1+\sqrt{2x^2-3x+2}}\right)>0\left(\forall x\right)\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow2x^2-9x+9-3+\sqrt{9x-2x^2}=0\)
\(\Leftrightarrow2x\left(x-3\right)-3\left(x-3\right)+\frac{\left(x-3\right)\left(-2x+3\right)}{\sqrt{9x-2x^2}+3}=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x-3-\frac{2x-3}{\sqrt{9x-2x^2}+3}\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x-3\right)\left(1-\frac{1}{\sqrt{9x-2x^2}+3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{3}{2}\end{cases}}\)
TH còn lại loại bạn tự giải nha
a) đK:\(2x^2-3x+2\ge0\)
\(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)
<=> \(2x^2+6-2\sqrt{2x^2-3x+2}=3\left(x+1\right)\)
<=> \(2x^2-3x+3-2\sqrt{2x^2-3x+2}=0\)
Đặt: \(t=\sqrt{2x^2-3x+2}\left(t\ge0\right)\)
Ta có phương trình:
\(t^2-2+3-2t=0\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
Với t=1 ta có phương trình:
\(\sqrt{2x^2-3x+2}=1\Leftrightarrow2x^2-3x+1=0\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=\frac{1}{2}\left(tm\right)\end{cases}}\)
Vậy:...
Câu b tương tự.
Đặt ẩn phụ x2 + x xong quy đồng ra phương trình bật 2