\(\sqrt[3]{1-x}+\sqrt{x+2}=1\)

b.\(\sqrt[3...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Câu a)

Đặt \(\left\{\begin{matrix} \sqrt[3]{1-x}=a\\ \sqrt{x+2}=b\end{matrix}\right.\). Khi đó ta thu được hệ sau:

\(\left\{\begin{matrix} a+b=1\\ a^3+b^2=3\end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} b=1-a\\ a^3+b^2=3\end{matrix}\right.\)

\(\Rightarrow a^3+(1-a)^2=3\)

\(\Rightarrow a^3+a^2-2a-2=0\)

\(\Leftrightarrow a^2(a+1)-2(a+1)=0\Leftrightarrow (a+1)(a^2-2)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=\pm \sqrt{2}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=2\\ x=1-\sqrt{8}\\ x=1+\sqrt{8}\end{matrix}\right.\)

Thử lại thấy $x=2$ và $x=1+\sqrt{8}$ thỏa mãn.

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Câu b)

Đặt \(\left\{\begin{matrix} \sqrt[3]{x^2-x-8}=a\\ \sqrt[3]{x^2-8x-1}=b\end{matrix}\right.\Rightarrow a^3-b^3=7x-7\)

PT trở thành:

\(\sqrt[3]{a^3-b^3+8}-a+b=2\)

\(\Rightarrow \sqrt[3]{a^3-b^3+8}=a-b+2\)

\(\Rightarrow a^3-b^3+8=(a-b+2)^3=a^3-b^3+8+3(a-b)(a+2)(-b+2)\)

(áp dụng công thức \((a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)\) )

\(\Rightarrow (a-b)(a+2)(-b+2)=0\Rightarrow \left[\begin{matrix} a=b\\ a=-2\\ b=2\end{matrix}\right.\)

Nếu \(a=b\Rightarrow x^2-x-8=x^2-8x-1\Rightarrow 7x-7=0\Rightarrow x=1\)

Nếu \(a=-2\Rightarrow x^2-x-8=-8\Rightarrow x^2-x=0\Rightarrow x=0; x=1\)

Nếu $b=2$ thì \(x^2-8x-1=8\Rightarrow x^2-8x-9=0\Rightarrow x=9; x=-1\)

Thử lại.............

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

10 tháng 5 2018

a) ĐKXĐ: 1\(\le x\le7\)

phương trình <=> \(x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(7-x\right)\left(x-1\right)}=0\\ \Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\\\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=7-x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\left(thoả.mãn\right) \)

Vậy S={5,4} là tập nghiệm của phương trình

10 tháng 5 2018

b) PT <=> \(2x^2-6x+4=\sqrt[2]{\left(x+2\right)\left(x^2-2x+4\right)}\)

Đặt \(\sqrt[2]{x+2}=y,\sqrt[2]{x^2-2x+4}=z\) (y,z>=0)

=> z^2-y^2=x^2-3x+2

pt<=> 2z^2-2y^2=3yz <=> (2z+y)(z-2y)=0

đến đó tự làm tự đặt dkxd

24 tháng 7 2017

a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\0>x\ge-1\end{matrix}\right.\). Để pt có nghiệm => x>0=> \(x\ge1\) pt<=> \(x-\sqrt{1-\dfrac{1}{x}}=\sqrt{x-\dfrac{1}{x}}.Bìnhphương2vetaco\left(x-\sqrt{1-\dfrac{1}{x}}\right)^2=x-\dfrac{1}{x}\)\(\Leftrightarrow x^2+1-\dfrac{1}{x}-2x\sqrt{1-\dfrac{1}{x}}=x-\dfrac{1}{x}\Leftrightarrow x^2-x+1=2\sqrt{x^2-x}\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\Leftrightarrow x^2-x=1\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

24 tháng 7 2017

b) ĐKXĐ\(0\le x\le1\) pt \(\Leftrightarrow\left(\sqrt{x^2+x}+\sqrt{x-x^2}\right)^2=\left(x+1\right)^2\Leftrightarrow2x+2x.\sqrt{1-x^2}=x^2+2x+1\Leftrightarrow x^2-2x\sqrt{1-x^2}+1-x^2+x^2=0\Leftrightarrow\left(x-\sqrt{1-x^2}\right)^2+x^2=0\)

9 tháng 7 2018

4) Ta có pt \(\Leftrightarrow\dfrac{7x+1+x^2-8x-1}{\sqrt[3]{\left(7x+1\right)^2}-\sqrt[3]{\left(7x+1\right)\left(x^2-8x-1\right)}+\sqrt[3]{\left(x^2-8x+1\right)^2}}+\dfrac{x^2-x+8-8}{\sqrt[3]{\left(x^2-x+8\right)^2}+2\sqrt[3]{x^2-x+8}+4}=0\)

\(\Leftrightarrow\dfrac{x^2-x}{...}+\dfrac{x^2-x}{...}=0\Leftrightarrow\left(x^2-x\right)\left(...\right)=0\)

Mà ...>0 => \(x^2-x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

9 tháng 7 2018

2) Ta có pt \(\Leftrightarrow\sqrt{x\left(x+1\right)}-\sqrt{x-1}=\sqrt{x}\Leftrightarrow x\left(x+1\right)=\left(\sqrt{x}+\sqrt{x-1}\right)^2\)

\(\Leftrightarrow x^2+x=2x-1+2\sqrt{x\left(x-1\right)}\Leftrightarrow x^2-x-1=2\left(\sqrt{x^2-x}-1\right)\)

\(\Leftrightarrow x^2-x-1=2.\dfrac{x^2-x-1}{\sqrt{x^2-x}+1}\Leftrightarrow\left(x^2-x-1\right)\left(1-\dfrac{2}{\sqrt{x^2-x}+1}\right)=0\)...đến đấy chắc tự làm tiếp được

NV
19 tháng 5 2019

Câu 1:

\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)

- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm

- Nhận thấy \(x=-1\) là 1 nghiệm

- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:

\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)

\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)

\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)

\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)

Vậy pt có nghiệm \(x=\pm1\)

Câu 2:

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)

- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:

\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)

- Nếu \(1\le x< 2\) pt trở thành:

\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)

Vậy nghiệm của pt là \(x\ge2\)

NV
19 tháng 5 2019

Câu 3:

Bình phương 2 vế ta được:

\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)

\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)

\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)

Đặt \(x^2+x+1=a>0\) pt trở thành:

\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Câu 5:

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

\(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)

\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)

Vậy nghiệm của pt là \(5\le x\le10\)