K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

$Dkxd:x>2\text{ hoặc } x\le -2$.

Th1: $x>2$. Khi đó:

$pt\iff (x-2)(x+2)+4\sqrt{x-2}\sqrt{\frac{(x+2)(x-2)}{x-2}}=-3$

$\iff (x-2)(x-2)+4\sqrt{(x-2)(x+2)}+3=0\iff (\sqrt{(x-2)(x+2)}+1)(\sqrt{(x-2)(x+2)}+3)=0(1)$.

Do $\sqrt{(x-2)(x+2)}\ge 0$ nên $VT(1)>0=VP(2)\implies $ vô nghiệm.

Th2: $x\le -2\implies 2-x\ge 0;-x-2>0$.

Khi đó: $pt\iff (2-x)(-x-2)-4(2-x)\sqrt{\frac{-x-2}{2-x}}+3=0$

$\iff (2-x)(-x-2)-4\sqrt{(2-x)(-x-2)}+3=0\iff (\sqrt{(2-x)(-x-2)-1})(\sqrt{(2-x)(-x-2)}-3)=0$.

$\iff \sqrt{(x-2)(x+2)}=1\text{ hoặc } \sqrt{(x-2)(x+2)}=3$.

$\iff x=5(l)\text{ hoặc} x=13(l)$.

Vậy phương trình đã cho vô nghiệm

1 tháng 8 2016

\(\text{Đ}K:x>2\) hoặc \(x\le-2\)

\(A=\left(x+2\right)\left(x-2\right)+4\left(x-2\right)\sqrt{\frac{x+2}{x-2}}=-3\)

\(A=\left(x^2-4\right)+4.\sqrt{x-2}.\sqrt{x+2}=-3\)

\(A=\left(x^2-4\right)+4\sqrt{x^2-4}=-3\)

\(A=\sqrt{x^2-4}\left(1-4\right)=-3\)

\(A=\sqrt{x^2-4}.\left(-3\right)=-3\)

\(A=\sqrt{x^2-4=1}\)

\(A=x^2-4=1\)

\(A=x^2=5\)

\(A=x=\orbr{\begin{cases}\sqrt{5}\\-\sqrt{5}\end{cases}}\)

Vây \(x=\orbr{\begin{cases}-\sqrt{5}\\\sqrt{5}\end{cases}}\)

15 tháng 9 2018

PT:

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+4\sqrt{\left(x-2\right)\left(x+2\right)}+3=0\)

ĐẶT: \(\sqrt{\left(x-2\right)\left(x+2\right)}=a\)

PTTT:

\(a^2+4a+3=0\Leftrightarrow\left(a+1\right)\left(a+3\right)=0\)

TỰ GIẢI TIẾP NHÉ

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmjVậy x = 1B2, GHPT:...
Đọc tiếp

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)

GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)

\(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))

Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm

Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmj

Vậy x = 1

B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)

ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)

Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)

Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1>0\forall t\in R\)\)

Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)

Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)

\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)

\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)

Đặt \(\(\frac{1}{x}=a\)\)

\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)

Tự làm nốt , mai ra lớp t giảng lại cho ...

3
13 tháng 1 2019

Vãi ạ :))

13 tháng 1 2019

ttpq_Trần Thanh Phương vãi j ?

20 tháng 5 2019

#)Hỏi j đi bn, bn ph hỏi cái j chứ làm lun rùi còn để cộng đồng ngắm ak ???

20 tháng 5 2019

Bó cả tay lẫn chân !!! Bất lực như gặp cực hình !