Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(\left(2x-1\right)\left(x-3\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=0\\x-3=0\\x+7=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=3\\x=-7\end{array}\right.\)
Vậy phương trình đã cho các nghiệm \(x=-\frac{1}{2};x=3;x=-7.\)
b ) \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-3=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=3\end{array}\right.\)
Vậy phương trình đã cho các nghiệm \(x=1,x=3\).
a) 3x + 18 = 0
<=> 3*(x+6)=0
<=> x+6=0
<=> x=-6
Vậy S={-6}
6x-7=3x+2
<=> 6x - 3x= 2+7
<=> 3x=9
<=> x=3
Vậy S={ 3}
c) mk ko hỉu rõ đề
\(\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\)
\(\Leftrightarrow\left[2x+7+3\left(x+2\right)\right]\left[2x+7-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\)
\(\Leftrightarrow\left(5x+13\right)\left(-x+1\right)=0\)
\(\Leftrightarrow5x+13=0\) hay \(-x+1=0\)
\(\Leftrightarrow x=\dfrac{-13}{5}\) hay \(x=1\).
-Vậy \(S=\left\{\dfrac{-13}{5};1\right\}\)
\(\Leftrightarrow\left(4x+14\right)^2=\left(3x+9\right)^2\)
\(\Leftrightarrow\left(4x+14+3x+9\right)\cdot\left(4x+14-3x-9\right)=0\)
\(\Leftrightarrow\left(7x+23\right)\left(x+5\right)=0\)
hay \(x\in\left\{-\dfrac{23}{7};-5\right\}\)
\(\dfrac{2x}{x-3}+\dfrac{x}{x+3}=\dfrac{2x^2}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)+x\left(x-3\right)=2x^2\)
\(\Leftrightarrow2x^2+6x+x^2-3x-2x^2=0\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy ............................
ĐKXĐ: x khác 3 và x khác -3
\(\dfrac{2x}{x-3}+\dfrac{x}{x+3}=\dfrac{2x^2}{x^2-9}\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow2x^2+6x+x^2-3x=2x^2\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy......
\(\Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\)
\(\Leftrightarrow\left(2x+7-3x-6\right)\left(2x+7+3x+6\right)=0\)
=>(1-x)(5x+13)=0
=>x=1 hoặc x=-13/5