Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge-3\)
Đặt \(t=\sqrt{x+3}\) \(\left(t\ge0\right)\) \(\Rightarrow t^2=x+3\)
\(x^2+2x+\sqrt{x+3}+2x\sqrt{x+3}=9\)
\(x^2+x+\left(x+3\right)+t+2xt=12\)
\(t^2+t\left(2x+1\right)+\left(x^2+x-12\right)=0\)
Goi phương trình trên là phương trình bậc 2 ẩn t
\(\Delta=\left(2x+1\right)^2-4\cdot1\cdot\left(x^2+x-12\right)\)
\(=4x^2+4x+1-4x^2-4x+48=49>0\)
\(\Rightarrow\)Phương trình có hai nghiệm phân biệt
\(t_1=\frac{-2x-1-\sqrt{49}}{2\cdot1}=\frac{-2x-8}{2}=-x-4\)
\(t_2=\frac{-2x-1+\sqrt{49}}{2}=3-x\)
+) \(t=-x-4\)
\(\Rightarrow\sqrt{x+3}=-x-4\)
ĐK : \(x\le-4\)
Bình phương 2 vế \(\Rightarrow x+3=x^2+8x+16\)
\(x^2+7x+13=0\)
\(\Delta=-3< 0\Rightarrow x\in\varnothing\)
+) \(t=3-x\)
\(\Rightarrow\sqrt{x+3}=3-x\)
ĐK : \(x\le3\)
BÌnh phương 2 vế \(\Rightarrow x+3=9-6x+x^2\)
\(x^2+7x-6=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-7+\sqrt{73}}{2}\left(tm\right)\\x=\frac{-7-\sqrt{73}}{2}\left(ktm\right)\end{cases}}\)
Vậy \(S=\left\{\frac{-7+\sqrt{73}}{2}\right\}\)
Sửa lại đề bài cho mk là: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
\(1.\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{\left(4-x\right)^2}=4-x\)
\(4-x-4+x=0\)
= 0 phương trình vô nghiệm.
\(2.\sqrt{4x^2-12x+9}=2x-3\)
\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)
\(2x-3-2x+3=0\)
= 0 phương trình vô nghiệm.
a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left|4-x\right|=4-x\)
hay \(x\le4\)
b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left|2x-3\right|=2x-3\)
hay \(x\ge\dfrac{3}{2}\)
\(ĐK:x\in R\)
\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\) (*)
Đặt \(x^2+x+1=a;a\ge0\)
\(\rightarrow\left\{{}\begin{matrix}x^2+x+4=a+3\\2x^2+2x+9=2a+7\end{matrix}\right.\)
(*) \(\Rightarrow\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow\left(\sqrt{a+3}+\sqrt{a}\right)^2=\left(\sqrt{2a+7}\right)^2\)
\(\Leftrightarrow a+3+a+2\sqrt{a\left(a+3\right)}=2a+7\)
\(\Leftrightarrow2\sqrt{a\left(a+3\right)}=4\)
\(\Leftrightarrow\sqrt{a\left(a+3\right)}=2\)
\(\Leftrightarrow a\left(a+3\right)=4\)
\(\Leftrightarrow a^2+3a-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) \((tm)\)
Vậy \(S=\left\{0;-1\right\}\)
Ta có: \(\sqrt{x^2+2x+3}+\sqrt{x^2+x+2}=2x+2\)
Bình phương 2 vế ta có:
\(2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=4\left(x+1\right)^2-x^2-2x-3-x^2-x-2\) (\(x\ge-1\))
\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=4x^2+8x+4-2x^2-3x-5\)
\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=2x^2+5x-1\)\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=2x^2+5x-1\)
Bình phương 2 vế, ta được:
\(4\left(x^2+2x+3\right)\left(x^2+x+2\right)=\left(2x^2+5x-1\right)^2\) ( ĐK:\(\left[{}\begin{matrix}x\le\dfrac{-5-\sqrt{33}}{4}\\x\ge\dfrac{-5+\sqrt{33}}{4}\end{matrix}\right.\))
\(\Leftrightarrow4\left(x^4+x^3+2x^2+2x^3+2x^2+4x+3x^2+3x+6\right)=4x^4+20x^3+21x^2-10x+1\)
\(\Leftrightarrow4x^4+4x^3+8x^2+8x^3+8x^2+16x+12x^2+12x+24=4x^4+20x^3+21x^2-10x+1\)\(\Leftrightarrow-8x^3+7x^2+38x+23=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{23}{8}\\x=-1\left(loai\right)\end{matrix}\right.\)
Vậy nghiệm của PT là \(x=\dfrac{23}{8}\)
\(\sqrt{4x^2}=3\left(ĐK:4x^2\ge0\forall x\in R\right)\\ \Leftrightarrow\sqrt{\left(2x\right)^2}=3\\ \Leftrightarrow\left|2x\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}2x=-3\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\x=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{2};\dfrac{3}{2}\right\}\)
\(\sqrt{x^2-6x+9}=2\\ \Leftrightarrow\sqrt{\left(x-3\right)^2}=2\left(ĐK:\left(x-3\right)^2\ge0\forall x\in R\right)\\ \Leftrightarrow\left|x-3\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+3\\x=-2-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=-5\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left(\pm5\right)\)
\(\sqrt{\left(2x-3\right)^2}=6\left(ĐK:\left(2x-3\right)^2\ge0\forall x\in R\right)\\ \Leftrightarrow\left|2x-3\right|=6\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=3+6\\2x=-6+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4,5\left(tm\right)\\x=-1,5\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{4,5;-1,5\right\}\)
\(\sqrt{25x^2}=100\\ \sqrt{\left(5x\right)^2}=100\left(ĐK:\left(5x\right)^2\ge0\forall x\in R\right)\\\Leftrightarrow \left|5x\right|=100\\ \Leftrightarrow\left[{}\begin{matrix}5x=100\\5x=-100\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=20\left(tm\right)\\x=-20\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\pm20\right\}\)
\(2x^2+x+\sqrt{x^2+3}+2x\sqrt{x^2+3}=9\)
\(\Leftrightarrow2x^2+x-3+\left(\sqrt{x^2+3}-2\right)+\left(2x\sqrt{x^2+3}-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{x^2+3-4}{\sqrt{x^2+3}+2}+\frac{4x\left(x^2+3\right)-16}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{x^2-1}{\sqrt{x^2+3}+2}+\frac{4x^3+12x-16}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x-1\right)\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(2x+3\right)+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}\right)=0\)
Dễ thấy: \(\left(2x+3\right)+\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{4\left(x^2+x+4\right)}{2x\sqrt{x^2+3}+4}>0\)
Nên x-1=0 suy ra x=1
Không có ĐK của x làm sao mà khẳng đinh cái kia >0 đ.c
Nếu 2x+3 và x+1 <0 thì sao nhỉ @@
@Thắng Nguyễn