\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge0\right)\)

<=>\(t^2-7=6x^2-12x\)

\(\Leftrightarrow\dfrac{t^2-7}{6}=x^2-2x\)

Ta có pt mới:

\(\dfrac{7-t^2}{6}+t=0\)

\(\Leftrightarrow t^2-6t-7=0\)

\(\Leftrightarrow t^2-2\cdot t\cdot3+9-9-7=0\)

\(\Leftrightarrow\left(t-3\right)^2=16\)

\(\Rightarrow\left[{}\begin{matrix}t=7\\t=-1\end{matrix}\right.\)(loại t=-1)

Với t=7

=>\(\sqrt{6x^2-12x+7}=7\)

<=>6x2-12x+7=49

<=>6x2-12x-42=0

<=>x2-2x-7=0

<=>(x-1)2=8

=>\(\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)

15 tháng 3 2018

\(ĐKXĐ:0\le x\le6\)

\(\Leftrightarrow\sqrt{6x-x^2}-2\left(6x-x^2\right)+15=0\)

Đặt \(\sqrt{6x-x^2}=t\left(t\ge0\right)\)

PT trở thành:

\(2t^2-t-15=0\)

\(\Leftrightarrow\left(t-3\right)\left(2t+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=\frac{-5}{2}\end{cases}}\)

\(TH1:t=3\Rightarrow\sqrt{6x-x^2}=3\Rightarrow6x-x^2=9\)

\(\Leftrightarrow x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x=3\)

\(TH2:t=\frac{-5}{2}\)không TMĐK \(t\ge0\)

Vậy PT có nghiệm là \(S=\left\{3\right\}\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

7 tháng 12 2017

https://olm.vn/hoi-dap/question/1102059.html

31 tháng 7 2018

a) điều kiện : \(x\ge3\)

ta có : \(\sqrt{x^2-9}-\sqrt{4x-12}\le0\) \(\Leftrightarrow\sqrt{x^2-9}\le\sqrt{4x-12}\)

\(\Leftrightarrow x^2-9\le4x-12\Leftrightarrow x^2-4x+3\le0\Leftrightarrow\left(x-1\right)\left(x-3\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x-3\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x-3\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1\le x\le3\\x\in\varnothing\end{matrix}\right.\) kết hợp với điều kiện \(\Rightarrow x=3\)

b) điều kiện \(x\ge1\)

ta có : \(\sqrt{x^2-1}-\sqrt{x-1}>0\) \(\Leftrightarrow\sqrt{x^2-1}>\sqrt{x-1}\)

\(\Leftrightarrow x^2-1>x-1\Leftrightarrow x^2-x< 0\Leftrightarrow x\left(x-1\right)< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\left(L\right)\end{matrix}\right.\) vậy \(x>1\)

c) điều kiện \(x\ge3\)

ta có : \(\sqrt{2x^2-12x+18}+\sqrt{x-3}>0\)

\(\Leftrightarrow\sqrt{2\left(x-3\right)^2}+\sqrt{x-3}>0\) \(\Rightarrow x\ne3\) kết hợp với điều kiện \(\Rightarrow x>3\)

31 tháng 7 2018

dc đấy

14 tháng 7 2019

\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow9x-7x=5+7\)

\(\Leftrightarrow2x=12\)

\(\Leftrightarrow x=6\)

14 tháng 7 2019

\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

\(\Leftrightarrow x=9\)

\(\Leftrightarrow x^2+4=2x+3\)

=>x^2-2x+1=0

=>(x-1)^2=0

=>x=1

19 tháng 6 2016

haizz mà đứa trong hình là con nhà ai mà dễ thương wa

19 tháng 6 2016

pt quá vĩ đại =.= cx trên OLM lun