Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm
- Nhận thấy \(x=-1\) là 1 nghiệm
- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:
\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)
\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)
\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)
\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)
Vậy pt có nghiệm \(x=\pm1\)
Câu 2:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)
- Nếu \(1\le x< 2\) pt trở thành:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
Câu 3:
Bình phương 2 vế ta được:
\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)
\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)
Đặt \(x^2+x+1=a>0\) pt trở thành:
\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu 5:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Mà \(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy nghiệm của pt là \(5\le x\le10\)
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
\(\text{Đ}K:\text{ }x\ge\frac{1}{2}\)
\(1\Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\Leftrightarrow x+\sqrt{\left(x-1\right)^2}=1\Leftrightarrow x+\left|x-1\right|=1\)
\(+,x\ge1\Rightarrow\left|x-1\right|=x-1\Rightarrow2x-1=1\Leftrightarrow x=1\left(tm\right)\)
\(+,x< 1\Rightarrow\left|x-1\right|=1-x\Rightarrow1=1\left(\text{đ}ung\right)\Rightarrow\frac{1}{2}\le\text{ }x< 1\)
\(Vaay:\frac{1}{2}\le x\le1\)
Làm câu b cho ngắn ^_^
b)ĐKXD:........
Ta có: \(\sqrt{x-2\sqrt{x-1}=2}\)
\(\Rightarrow x-2\sqrt{x-1}-4=0\)
\(\Rightarrow\left(\sqrt{x-1}-1\right)^2=4\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x-1}-1=2\\\sqrt{x-1}-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}\sqrt{x-1}=3\\\sqrt{x-1}=-1\left(L\right)\end{cases}}\)
\(\Rightarrow x-1=9\Rightarrow x=10\)
a) \(\sqrt{x^2+2x+1}-\sqrt{x^2-2x+1}=2\)\(\Leftrightarrow\sqrt{\left(x+1\right)^2}-\sqrt{\left(x-1\right)^2}=2\)\(\Leftrightarrow\left(x+1\right)-|x-1|=2\)
Với \(x\ge1\)thì \(\left(x+1\right)-\left(x-1\right)=2\Leftrightarrow x+1-x+1=2\Leftrightarrow2=2\)\(\Rightarrow x\in R\)(đúng với mọi x)
với \(x< 1\)thì \(\left(x+1\right)-\left(1-x\right)=2\Leftrightarrow x+1-1+x=2\Leftrightarrow2x=2\Leftrightarrow x=1\)
b) \(\sqrt{x-2\sqrt{x-1}}=2\Leftrightarrow\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}=2\)\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)\(\Leftrightarrow|\sqrt{x-1}-1|=2\)
Với \(\sqrt{x-1}\ge1\)thì \(\sqrt{x-1}-1=2\Leftrightarrow\sqrt{x-1}=3\Leftrightarrow x-1=9\Leftrightarrow x=10\)
với \(\sqrt{x-1}< 1\)thì \(1-\sqrt{x-1}=2\Leftrightarrow-\sqrt{x-1}=1\Leftrightarrow\sqrt{x-1}=-1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
Ở cả hai bạì bạn tự tìm ĐKXĐ rồi làm như mình nhe!
\(2\left(x-1\right)\sqrt{x^2}+2x-1=x^2-2x-1\)
TH1: \(x\ge0\)
\(\Leftrightarrow2\left(x-1\right)x+2x-1=x^2-2x-1\)
\(\Leftrightarrow2x^2-2x+2x-1=x^2-2x-1\)
\(\Leftrightarrow x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\)
TH2:\(x< 0\)
\(\Leftrightarrow-2\left(x-1\right)x+2x-1=x^2-2x-1\)
\(\Leftrightarrow-2x^2+2x+2x-1=x^2-2x-1\)
\(\Leftrightarrow3x^2-6x=0\Leftrightarrow3x\left(x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
Vậy S = {0}