Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXD:...
\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)
Đến đây dễ rồi
Bạn tự tìm điều kiện xác định nhé :)
- \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(\sqrt{1-x}+1\right)=1\)
\(\Leftrightarrow\left(\sqrt{x+3}+\sqrt{x}\right)\left(\sqrt{x+3}-\sqrt{x}\right)\left(\sqrt{1-x}+1\right)=\sqrt{x+3}+\sqrt{x}\)
\(\Leftrightarrow3\left(\sqrt{1-x}+1\right)=\sqrt{x+3}+\sqrt{x}\)
Tới đây pt đã đơn giản hơn!
- \(3x^2+2x=2\sqrt{x^2+x}-x+1\)
\(\Leftrightarrow3\left(x^2+x\right)-2\sqrt{x^2+x}-1=0\)
Đặt \(t=\sqrt{x^2+x}\) thì pt trở thành \(3t^2-2t-1=0\)
Từ đó dễ dàng giải tiếp!
- Đặt \(a=\sqrt{x+x^2}\), \(b=\sqrt{x-x^2}\) thì ta có \(\hept{\begin{cases}a+b=x+1\\a^2+b^2=2x\end{cases}}\)
Tới đây bạn tự giải tiếp.
giải pt \(\sqrt{x}+\sqrt{1-x}\)- \(2\sqrt{x\left(1-x\right)}\)- \(2\sqrt[4]{x\left(1-x\right)}\)= -1
Đặt \(\sqrt{x}+\sqrt{1-x}=t\)ĐK: bn tự tìm nhá
\(t^2=1+2\sqrt{x\left(1-x\right)}\)\(\Rightarrow2\sqrt{x\left(1-x\right)}=t^2-1\)
\(2.\sqrt[4]{x\left(1-x\right)}=\sqrt{t^2-1}\)
Từ trên Suy ra: \(t-\left(t^2-1\right)-\sqrt{t^2-1}=...\)
đến đây bn tự giải đi , mình lười lắm mà nhớ Tk cho mình nha ^.^ thanks
giải sai chỗ này nek
\(\sqrt[4]{x\left(1-4\right)}=\sqrt{\frac{t^2-1}{2}}\)
a/ ĐKXĐ: \(\left|x\right|\ge1\)
- Với \(x\le-1\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+6}>0\\x-2\sqrt{x^2-1}< 0\end{matrix}\right.\) \(\Rightarrow\) pt vô nghiệm
- Với \(x>1\) ta luôn có \(\sqrt{x^2+6}>x\) (dễ dàng chứng minh bằng cách bình phương 2 vế)
Mà \(x>x-2\sqrt{x^2-1}\Rightarrow\sqrt{x^2+6}>x-2\sqrt{x^2-1}\)
Phương trình vô nghiệm
Bạn có nhầm đề ko?
b/ ĐKXĐ: \(x\ge1\)
\(\sqrt[3]{2-x}+\sqrt{x-1}=1\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{2-x}=a\\\sqrt{x-1}=b\end{matrix}\right.\) ta có hệ:
\(\left\{{}\begin{matrix}a+b=1\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=1-a\\a^3+b^2=1\end{matrix}\right.\) \(\Rightarrow a^3+\left(1-a\right)^2=1\)
\(\Leftrightarrow a^3+a^2-2a=0\) \(\Leftrightarrow a\left(a-1\right)\left(a+2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{2-x}=0\\\sqrt[3]{2-x}=1\\\sqrt[3]{2-x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\\x=10\end{matrix}\right.\)
c/
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{matrix}\right.\) ta có hệ:
\(\left\{{}\begin{matrix}a^3-b^3=2\\a^2+b^2+ab=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a^2+ab+b^2\right)=2\\a^2+b^2+ab=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=2\Rightarrow a=b+2\\a^2+b^2+ab=1\end{matrix}\right.\) \(\Rightarrow\left(b+2\right)^2+b^2+\left(b+2\right)b-1=0\)
\(\Leftrightarrow3b^2+6b+3=0\Rightarrow3\left(b+1\right)^2=0\Rightarrow b=-1\)
\(\Rightarrow\sqrt[3]{x-1}=-1\Rightarrow x=0\)
Đặt \(\hept{\begin{cases}\sqrt[3]{x+1}=a\\\sqrt[3]{x-1}=b\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=a^3\\x-1=b^3\end{cases}}}\)
Ta có
\(pt\Leftrightarrow a^2+b^2+ab=1\) (1)
Lại có \(a^3-b^3=2\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=2\) (2)
Thay (1) vào (2) ta có a-b=2<=>a=2+b thay và (1)
\(\left(2+b\right)^2+b^2+b\left(b+2\right)=1\)
\(\Leftrightarrow3b^2+6b+3=0\)
\(\Leftrightarrow3\left(b+1\right)^2=0\Leftrightarrow b=-1\)
\(\Leftrightarrow\sqrt[3]{x-1}=-1\Leftrightarrow x=0\)
a/ ĐKXĐ: \(x\ge\frac{3}{4}\)
\(\Leftrightarrow6x+1+2\sqrt{5x^2+5x}=6x+1+2\sqrt{8x^2+10x-12}\)
\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\)
\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)
\(\Leftrightarrow3x^2+5x-12=0\Rightarrow\left[{}\begin{matrix}x=-3< \frac{3}{4}\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)
b/ \(\Leftrightarrow x^2+x+1+2\sqrt{x^2+x+1}-3=0\)
Đặt \(\sqrt{x^2+x+1}=t>0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+x+1}=1\)
\(\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
câu này cậu dùng bunhia vt rồi sd cối là đc làm đc n bài nào rồi
<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)
b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)
<=>\(2\sqrt{2}^x+2=6\)
<=>x=2
1/ ĐKXĐ: ...
\(\Leftrightarrow x=2016-2015\sqrt{x}-x\)
\(\Leftrightarrow2x+2015\sqrt{x}-2016=0\)
Đặt \(\sqrt{x}=t\ge0\)
\(\Rightarrow2t^2+2015t-2016=0\)
Nghiệm xấu kinh khủng, bạn tự giải
2. ĐKXĐ: ...
\(x^2+4x+4+4y^2-8y+4=4xy+13\)
\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=-5< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2y+1\)
Thay xuống dưới:
\(\sqrt{\frac{\left(x+y\right)\left(x-2y\right)}{x-y}}+\sqrt{x+y}=\frac{2}{\sqrt{\left(x-y\right)\left(x+y\right)}}\)
\(\Leftrightarrow\left(x+y\right)\sqrt{x-2y}+\left(x+y\right)\sqrt{x-y}=2\)
\(\Leftrightarrow3y+1+\left(3y+1\right)\sqrt{y+1}=2\)
\(\Leftrightarrow6y+\left(3y+1\right)\left(\sqrt{y+1}-1\right)=0\)
\(\Leftrightarrow6y+\frac{\left(3y+1\right)y}{\sqrt{y+1}+1}=0\)
\(\Leftrightarrow y\left(6+\frac{3y+1}{\sqrt{y+1}+1}\right)=0\Rightarrow y=0\Rightarrow x=1\)
c1 cậu đặt cái trong căn =a
=>pt<=> a^2-2x=2xa-a
c2 cậu đưa về dang a^2=b^2
bài 2 nhé
đặt \(a=\sqrt{x+2}\)
ta có pt<=>
\(2a^3=3x\left(x+2\right)-x^3\Leftrightarrow2a^3=3xa^2-x^3\)
\(\Leftrightarrow2a^3-3xa^2+x^3=0\Leftrightarrow2a^3-2a^2x+x^2-xa^2=0\)
\(\Leftrightarrow\left(a-x\right)\left(2a^2-ax-x^2\right)\)
cách của mình có vẻ dài, tham khảo :
ĐKXĐ \(x\ge0\)
\(1-\sqrt{2\left(x^2-x+1\right)}=x-\sqrt{x}\)
\(\Leftrightarrow\sqrt{2\left(x^2-x+1\right)}=-x+\sqrt{x}+1\)
\(\Rightarrow2\left(x^2-x+1\right)=\left(-x+\sqrt{x}+1\right)^2\)
\(\Leftrightarrow2x^2-2x+2=x^2+x+1-2x\sqrt{x}+2\sqrt{x}-2x\)
\(\Leftrightarrow x^2-x+1+2x\sqrt{x}-2\sqrt{x}=0\)
\(\Leftrightarrow\left(x^2+x\sqrt{x}-x\right)+\left(x\sqrt{x}+x-\sqrt{x}\right)+\left(-x-\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{x}-1\right)^2=0\Leftrightarrow x+\sqrt{x}-1=0\)
\(\Leftrightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2=\frac{5}{4}\Leftrightarrow\sqrt{x}+\frac{1}{2}=\frac{\sqrt{5}}{2}\)(vì \(\sqrt{x}+\frac{1}{2}>0\))
\(\Leftrightarrow\sqrt{x}=\frac{\sqrt{5}-1}{2}\Leftrightarrow x=\frac{3-\sqrt{5}}{2}\left(tmđk\right)\)
Thử lại ta thấy \(x=\frac{3-\sqrt{5}}{2}\)thỏa mãn phương trình đã cho .
Vậy.................
\(pt\Leftrightarrow1-x+\sqrt{x}=\sqrt{2\left(x^2-x+1\right)}\)
\(\Rightarrow1+x^2+x-2x-2x\sqrt{x}+2\sqrt{x}=2x^2-2x+2\)
\(\Leftrightarrow x^2-x+1+2x\sqrt{x}-2\sqrt{x}=0\)
\(\Leftrightarrow x^2+x+1+2x\sqrt{x}-2\sqrt{x}.1-2x.1=0\)
\(\Leftrightarrow\left(x+\sqrt{x}-1\right)^2=0\)
\(\Leftrightarrow x+\sqrt{x}-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\frac{-1+\sqrt{5}}{2}\\\sqrt{x}=\frac{-1-\sqrt{5}}{2}\left(loai\right)\end{cases}}\)
Với \(\sqrt{x}=\frac{-1+\sqrt{5}}{2}\Leftrightarrow x=\frac{3-\sqrt{5}}{2}\)thay vào phương trình ban đầu ta có \(x=\frac{3-\sqrt{5}}{2}\)thỏa mãn phương trình