Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(TH1:x\le\frac{1}{3}\Rightarrow1-3x\ge0\Rightarrow\left|1-3x\right|=1-3x\).Khi đó,phương trình trên tương đương với
\(1-3x=x-8\Rightarrow1+8=x+3x\Rightarrow9=4x\Rightarrow x=\frac{9}{4}\left(L\right)\)
\(TH2:x>\frac{1}{3}\Rightarrow1-3x< 0\Rightarrow\left|1-3x\right|=3x-1\).Khi đó,phương trình trên tương đương với
\(3x-1=x-8\Rightarrow8-1=x-3x\Rightarrow7=-2x\Rightarrow x=\frac{-7}{2}\left(L\right)\)
Vậy phương trình vô nghiệm
Bài làm
| 1 - 3x | = x - 8
Nếu \(1-3x\ge0\Leftrightarrow x\le-\frac{1}{3}\)
Phương trình: 1 - 3x = x - 8
<=> -4x = 9
<=> x = -9/4 ( TM )
Nếu \(1-3x\le0\Leftrightarrow x\ge-\frac{1}{3}\)
Phương trình: 3x - 1 = x - 8
<=> 2x = 7
<=> x = 7/2 ( TM )
Vậy .....
\(\left(3x-2\right)\left(3x+8\right)\left(x+1\right)^2+16=0\)
\(\Leftrightarrow\left(9x^2+18x-16\right)\left(x^2+2x+1\right)+16=0\)
\(\Leftrightarrow\left[9\left(x^2+2x+1\right)-25\right]\left(x^2+2x+1\right)+16=0\)
Đặt \(x^2+2x+1=a\ge0\)
\(\left(9a-25\right)a+16=0\)
\(\Leftrightarrow9a^2-25a+16=0\)
\(\Rightarrow\left[{}\begin{matrix}a=1\\a=\frac{16}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+2x+1=1\\x^2+2x+1=\frac{16}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\left(x+2\right)=0\\\left(x+1\right)^2=\left(\frac{4}{3}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x+1=\frac{4}{3}\\x+1=-\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=\frac{1}{3}\\x=-\frac{7}{3}\end{matrix}\right.\)
(x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> (x - 1)(5x + 3) - (3x - 8)(x - 1)= 0
<=> (x - 1)(5x + 3 - 3x + 8) = 0
<=> (x - 1)(2x + 11) = 0
\(\Leftrightarrow \begin{bmatrix} x - 1 = 0 & & \\ 2x + 11 = 0 & & \end{bmatrix}\)pn bỏ dấu ngoặc bên phải nha
\(\Leftrightarrow \begin{bmatrix} x = 1 & & \\ x = \frac{-11}{2} & & \end{bmatrix}\)
Vậy ............
\(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\Rightarrow\left(x-1\right)\left(5x+3\right)-\left(3x-8\right)\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(5x+3-3x+8\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x+11\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+11=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{11}{2}\end{matrix}\right.\)
Chúc bạn học tốt!
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
a: Đặt x-3=a; x+1=b
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
=>(x-3)(x+1)(2x-2)=0
hay \(x\in\left\{3;-1;1\right\}\)
b: \(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-15x^2-9x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+6x\left(2x^2+1\right)-4x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(2x^2+6x+1\right)-4x\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow x^2+3x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x^2+3x+\dfrac{9}{4}=\dfrac{7}{4}\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{7}{4}\)
hay \(x\in\left\{\dfrac{\sqrt{7}-3}{2};\dfrac{-\sqrt{7}-3}{2}\right\}\)
1.a)|−7x|=3x+16
Vì |-7x| ≥ 0 nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\) (*)
Với đk (*), ta có: |-7x|=3x+16
\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔ \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)
⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)
b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)
⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)
⇒ x2 - 2x - x + 2 - x2 - 2x = 5x - 8
⇔ -5x - 5x = -8 - 2
⇔ -10x = -10
⇔ x=1
2.7x+5 < 3x−11
⇔ 7x - 3x < -11 - 5
⇔ 4x < -16
⇔ x < -4
bạn tự biểu diễn trên trục số nha !
\(\left|1-3x\right|=x-8\)
\(\Leftrightarrow\orbr{\begin{cases}1-3x=x-8\\1-3x=-x+8\end{cases}\Leftrightarrow\orbr{\begin{cases}9-4x=0\\-7-2x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{9}{4}\\x=-\frac{7}{2}\end{cases}}}\)
ĐKXĐ : \(x-8\ge0\Rightarrow x\ge8\)
Khi đó |1 - 3x| = x - 8
<=> \(\orbr{\begin{cases}1-3x=x-8\\1-3x=-x+8\end{cases}}\Rightarrow\orbr{\begin{cases}-4x=-9\\-2x=7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\text{(loại)}\\x=-3,5\left(\text{loại}\right)\end{cases}}\)
=> \(x\in\varnothing\)