Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: \(x\ge0;y\ge-1\)
\(pt\left(1\right)\Leftrightarrow y^2-\left(x^2-5x-1\right)y-\left(x^3-3x^2-4x\right)=0\)
\(\Leftrightarrow\left(y+x+1\right)\left(y-x^2+4x\right)=0\Leftrightarrow\orbr{\begin{cases}y=x^2-4x\\y+x+1=0\end{cases}}\)
Từ pt(2) \(\Leftrightarrow3\sqrt{x}=\sqrt{y+1}+x+1\ge1\Rightarrow x>0\Rightarrow y+x+1>0\)
Vậy ta có \(\left(1\right)\Leftrightarrow y=x^2-4x\)
Thay \(y=x^2-4x\)vào (1) ta có: \(3\sqrt{x}-\sqrt{x^2-4x+1}=x+1\left(3\right)\)
Vì x=0 không là nghiệm của (3) nên \(\left(3\right)\Leftrightarrow\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{x+\frac{1}{x}-4}=3\)
Đặt \(t=\sqrt{x}+\frac{1}{\sqrt{x}}\left(t\ge2\right)\Rightarrow x+\frac{1}{x}=t^2-2\). PT trở thành:
\(t+\sqrt{t^2-6}=3\Leftrightarrow\sqrt{t^2-6}=3-t\Leftrightarrow\hept{\begin{cases}t\le3\\t^2-6=\left(3-t\right)^2\end{cases}}\Leftrightarrow t=\frac{5}{2}\)
\(\Leftrightarrow x+\frac{1}{x}=\frac{25}{4}-2\Leftrightarrow x^2-\frac{17}{4}x+1=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{1}{4}\end{cases}}\)
Từ đó suy ra hệ pt có 2 nghiệm: \(\left(4;0\right);\left(\frac{1}{4};\frac{-15}{16}\right)\)
\(\left\{{}\begin{matrix}x^2+xy+y^2=1\\x-y-xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2+3xy=1\\x-y-xy=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x-y=u\\xy=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^2+3v=1\\u-v=3\end{matrix}\right.\)
\(\Rightarrow u^2+3\left(u-3\right)=1\)
\(\Leftrightarrow u^2+3u-10=0\Rightarrow\left[{}\begin{matrix}u=2\Rightarrow v=-1\\u=-5\Rightarrow v=-8\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}u=2\\v=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=2\\xy=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\xy=-1\end{matrix}\right.\)
\(\Rightarrow x\left(x-2\right)=-1\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\Rightarrow y=-1\)
TH2: \(\left\{{}\begin{matrix}u=-5\\v=-8\end{matrix}\right.\) \(\Rightarrow...\) bạn tự làm tương tự
\(x+\sqrt{9-x^2}-x\sqrt{9-x^2}=3\left(-3\le x\le3\right)\)
\(\Leftrightarrow\sqrt{9-x^2}-x\sqrt{9-x^2}=3-x\\ \Leftrightarrow9-x^2+x^2\left(9-x^2\right)-2x\sqrt{\left(9-x^2\right)^2}=9-6x+x^2\\ \Leftrightarrow9+8x^2-x^4-2x\left(9-x^2\right)=x^2-6x+9\\ \Leftrightarrow-x^4+2x^3+7x^2-12x=0\\ \Leftrightarrow-x\left(x^3-2x^2-7x+12\right)=0\Leftrightarrow-x\left(x^3-3x^2+x^2-3x-4x+12\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x^2+x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=3\left(N\right)\\x^2+x-4=0\left(1\right)\end{matrix}\right.\)
\(\Delta\left(1\right)=1-4\left(-4\right)=17>0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1-\sqrt{17}}{2}\left(N\right)\\x=\dfrac{-1+\sqrt{17}}{2}\left(N\right)\end{matrix}\right.\)
Vậy \(S=\left\{0;3;\dfrac{-1-\sqrt{17}}{2};\dfrac{-1+\sqrt{17}}{2}\right\}\)
Tick ✔
ĐK: \(x,y\ne-1\)
hpt \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{x^2}{y^2+2y+1}+\frac{y^2}{x^2+2x+1}=\frac{8}{9}\\\frac{4x+4y-5xy+4}{xy+x+y+1}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{8}{9}\\4-\frac{9xy}{\left(x+1\right)\left(y+1\right)}\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a^2+b^2=\frac{8}{9}\\ab=\frac{4}{9}\end{cases}}\)\(\left(a;b\right)=\left(\frac{x}{y+1};\frac{y}{x+1}\right)\)
\(x-4\sqrt{x-2}+1=0\)(Đk x>2)
⇔\(x-2-4\sqrt{x-2}+4-1=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-2\right)^2-1=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-3=0\\\sqrt{x-2}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=3\\\sqrt{x-2}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=9\\x-2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)(thảo đk)
Vậy\(\left[{}\begin{matrix}x=11\\x=3\end{matrix}\right.\)là nghiệm của pt