Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(x^2-3x+1+\sqrt{2x-1}=0\)
ĐK:\(x\ge\frac{1}{2}\)
\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)
2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )
\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)
\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)
\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)
\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)
Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)
\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)
\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)
1. Thay m = 3 vào phương trình, ta được:
x2 - 2(3 + 3)x + 32 + 3 = 0
<=>x2 - 12x + 12 = 0
\(\Delta'\)= b'2 - ac = ( -6 )2 - 12 = 24 > 0
=> phương trình có 2 nghiệm phân biệt bạn tự tính nha ^ ^.
2. Mình thích ý này!
\(\Delta'\)= b'2 - ac = (-m-3)2 - 1.(m2 + 3) = m2 + 6m + 9 - m2 - 3 = 6m + 6
Để phương trình có 2 nghiệm phân biệt => \(\Delta'\)> 0 => m > -1.
Theo hệ thức viete ta có:
\(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=m^2+3\end{cases}}\)
Theo đề bài: 2 (x1 + x2) = 2x1x2
<=> x1 + x2 = x1x2
<=> 2m + 6 = m2 + 3
Giải phương trình ta được m = 3.
| x12 - x22| = 15 mình viết thiếu giải hộ mình với.Cảm ơn bạn
Vậy tìm cái j hả bạn
Chờ xíu nha bạn