Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người ưi giúp tui giải câu a thui nha tui giải đc câu b ròi làm ơn nhanh giúp thanks nhìu nhìu
Dk: x≥-5
Đặt √(x+5)=t (t≥0)
{x²-5=t(1)
{x+5=t²<=>t²-5=x(2)
lay (1)-(2):
(x-t)(x+t+1)=
giai tiep
\(\sqrt{10\left(x-3\right)}=\sqrt{26}\)
\(\Rightarrow10\left(x-3\right)=26\)
\(\Rightarrow x-3=2.6\)
\(\Rightarrow x=3+2,6=5,6\)
\(\sqrt{3x^2}=x+2\Rightarrow3x^2=x^2+4x+4\)
\(\Rightarrow3x^2-x^2-4x-4=0\)
\(\Rightarrow2x^2-4x-4=0\)
\(\Rightarrow x^2-2x-2=0\)
\(a=1;b=-2;c=-2;b'=-1\)
\(\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(-2\right)=3>0\)
Phương trình có 2 nghiệp phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)+\sqrt{3}}{1}=1+\sqrt{3}\)
\(x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)-\sqrt{3}}{1}=1-\sqrt{3}\)
\(\sqrt{x^2+6x+9}=3x-6\)
\(x^2+6x+9=9x^2-36x+36\)
\(9x^2-x^2-36x-6x+36-9=0\)
\(8x^2-42x+27=0\)
\(a=8;b=-42;c=27;b'=-21\)
\(\Delta'=b'^2-ac=\left(-21\right)^2-8.27=225>0\)
Phương trình có 2 nghiệp phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)+\sqrt{225}}{8}=\frac{21+15}{8}=\frac{36}{8}=\frac{9}{2}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)-\sqrt{225}}{8}=\frac{21-15}{8}=\frac{6}{8}=\frac{3}{4}\)
a/ ĐK: \(3x^2-10x+6\ge0\)
Nhận thấy \(x=0\) không phải nghiệm
\(\Leftrightarrow2\left(x^2+4\right)=\left(3x^2-10x+6\right)^2\)
\(\Leftrightarrow2\left(x^2+\frac{4}{x^2}\right)=\left(3x-10+\frac{6}{x}\right)^2=\left(3\left(x+\frac{2}{x}\right)-10\right)^2\)
Đặt \(x+\frac{2}{x}=a\Rightarrow x^2+\frac{4}{x^2}=a^2-4\)
\(\Leftrightarrow2\left(a^2-4\right)=\left(3a-10\right)^2\)
\(\Leftrightarrow7a^2-60a+108=0\Rightarrow\left[{}\begin{matrix}a=6\\a=\frac{18}{7}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{2}{x}=6\\x+\frac{2}{x}=\frac{18}{7}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+2=0\\7x^2-18x+14=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3+\sqrt{7}\\x=3-\sqrt{7}\end{matrix}\right.\)
b/ \(x\ge-\frac{1}{4}\)
Đặt \(\sqrt{x+\frac{1}{4}}=a\ge0\Rightarrow x=a^2-\frac{1}{4}\)
\(\Leftrightarrow a^2-\frac{1}{4}+\sqrt{a^2-\frac{1}{4}+\frac{1}{2}+a}=2\)
\(\Leftrightarrow a^2-\frac{1}{4}+\sqrt{\frac{1}{4}\left(4a^2+4a+1\right)}=2\)
\(\Leftrightarrow a^2-\frac{1}{4}+\frac{1}{2}\left(2a+1\right)=2\)
\(\Leftrightarrow4a^2+4a-7=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{-1+2\sqrt{2}}{2}\\a=\frac{-1-2\sqrt{2}}{2}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+\frac{1}{4}}=\frac{-1+2\sqrt{2}}{2}\Rightarrow x=2-\sqrt{2}\)
Phương trình tương đương \(x\sqrt{x^2-9}+3x=6\sqrt{2x^2-18}\)
\(\Leftrightarrow\left(\sqrt{x^2-9}-\sqrt{2}x+3\right)\left(\sqrt{2x^2-18}+x+3\sqrt{2}\right)=0\)
\(x+\frac{3x}{\sqrt{x^2-9}}=6\sqrt{2}\Leftrightarrow\left(x-3\sqrt{2}\right)+\frac{3\left(x-\sqrt{2x^2-18}\right)}{\sqrt{x^2-9}}=0\) \(\left(ĐKXĐ:\orbr{\begin{cases}x>3\\x< -3\end{cases}}\right)\)
\(\Leftrightarrow\left(x-3\sqrt{2}\right)-\frac{3\left(2x^2-18-x^2\right)}{\left(x+\sqrt{2x^2-18}\right)\sqrt{x^2-9}}=0\)
\(\Leftrightarrow\left(x-3\sqrt{2}\right)-\frac{3\left(x-3\sqrt{2}\right)\left(x+3\sqrt{2}\right)}{\left(x+\sqrt{2x^2-18}\right)\sqrt{x^2-9}}=0\)
\(\Leftrightarrow\left(x-3\sqrt{2}\right)\left(1-\frac{3\left(x+3\sqrt{2}\right)}{\left(x+\sqrt{2x^2-18}\right)\sqrt{x^2-9}}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\sqrt{2}\\1-\frac{3x+9\sqrt{2}}{x\sqrt{x^2-9}+\left(x^2-9\right)\sqrt{2}}=0\end{cases}\left(\text{1}\right)}\)
\(\left(1\right)\Leftrightarrow3x+9\sqrt{2}=x\sqrt{x^2-9}+x^2\sqrt{2}-9\sqrt{2}\)
\(\Leftrightarrow x\sqrt{x^2-9}+x^2\sqrt{2}-3x-18\sqrt{2}=0\)
Làm sao giải được bây giờ?