Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a:
ĐKXĐ:...........
\(\sqrt{x^2-x+9}=2x+1\)
\(\Rightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-x+9=(2x+1)^2=4x^2+4x+1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+5x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x(x-1)+8(x-1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x+8)=0\end{matrix}\right.\Rightarrow x=1\)
Vậy.....
Câu b:
ĐKXĐ:.........
Ta có: \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)
\(\Rightarrow (\sqrt{5x+7}-\sqrt{x+3})^2=3x+1\)
\(\Leftrightarrow 5x+7+x+3-2\sqrt{(5x+7)(x+3)}=3x+1\)
\(\Leftrightarrow 3(x+3)=2\sqrt{(5x+7)(x+3)}\)
\(\Leftrightarrow \sqrt{x+3}(3\sqrt{x+3}-2\sqrt{5x+7})=0\)
Vì \(x\geq -\frac{7}{5}\Rightarrow \sqrt{x+3}>0\). Do đó:
\(3\sqrt{x+3}-2\sqrt{5x+7}=0\)
\(\Rightarrow 9(x+3)=4(5x+7)\)
\(\Rightarrow 11x=-1\Rightarrow x=\frac{-1}{11}\) (thỏa mãn)
Vậy..........
\(\sqrt{10\left(x-3\right)}=\sqrt{26}\)
\(\Rightarrow10\left(x-3\right)=26\)
\(\Rightarrow x-3=2.6\)
\(\Rightarrow x=3+2,6=5,6\)
\(\sqrt{3x^2}=x+2\Rightarrow3x^2=x^2+4x+4\)
\(\Rightarrow3x^2-x^2-4x-4=0\)
\(\Rightarrow2x^2-4x-4=0\)
\(\Rightarrow x^2-2x-2=0\)
\(a=1;b=-2;c=-2;b'=-1\)
\(\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(-2\right)=3>0\)
Phương trình có 2 nghiệp phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)+\sqrt{3}}{1}=1+\sqrt{3}\)
\(x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)-\sqrt{3}}{1}=1-\sqrt{3}\)
\(\sqrt{x^2+6x+9}=3x-6\)
\(x^2+6x+9=9x^2-36x+36\)
\(9x^2-x^2-36x-6x+36-9=0\)
\(8x^2-42x+27=0\)
\(a=8;b=-42;c=27;b'=-21\)
\(\Delta'=b'^2-ac=\left(-21\right)^2-8.27=225>0\)
Phương trình có 2 nghiệp phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)+\sqrt{225}}{8}=\frac{21+15}{8}=\frac{36}{8}=\frac{9}{2}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)-\sqrt{225}}{8}=\frac{21-15}{8}=\frac{6}{8}=\frac{3}{4}\)