K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2021

\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}=\dfrac{x+3}{2019}+\dfrac{x+4}{2018}\)

=>\(\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)

=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)

=> (x+2022)(\(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\))=0

=>x+2022=0

=> x=-2022

26 tháng 4 2022

\(\dfrac{x-1}{x-3}>1\left(x\ne3\right)\)

\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)

\(\Leftrightarrow2>0\)

Vậy \(S=\left\{2\right\}\)

26 tháng 4 2022

-ĐKXĐ: \(x\ne3\)

\(\dfrac{x-1}{x-3}>1\)

\(\Leftrightarrow\dfrac{x-1}{x-3}-\dfrac{x-3}{x-3}>0\)

\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)

\(\Leftrightarrow\dfrac{2}{x-3}>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

-Vậy tập nghiệm của BĐT là {x l x>3}

11 tháng 5 2021

`x(4x-4)-32>4x(x+1)`

`<=>4x^2-4x-32>4x^2+4x`

`<=>8x<-32`

`<=>x<-4`

Vậy `S={x|x<-4}`

Sửa đề: (x-15)/17

=>\(\left(\dfrac{x-15}{17}-5\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-76}{12}-2\right)=0\)=>x-100=0

=>x=100

NV
7 tháng 4 2021

\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)

\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4-\sqrt{5}\\x=4+\sqrt{5}\end{matrix}\right.\)

16 tháng 4 2021

a, \(x^2\)≥1

\(\Leftrightarrow\) x>1

b, \(x^2\)<1

\(\Rightarrow\) x∈∅

c, \(x^2\)+3x ≥ 0

\(\Leftrightarrow\) \(x^2\)≥-3x

\(\Leftrightarrow\) x≥-3

d, \(x^2\)+3x+3≥0

\(\Leftrightarrow\) \(\left(x+\dfrac{3}{2}\right)^2\)+\(\dfrac{3}{4}\)≥0+\(\dfrac{3}{4}\)

\(\Leftrightarrow\) \(x^2\)+\(\dfrac{3}{2}^2\)≥0

\(\Leftrightarrow\)\(x^2\)\(\dfrac{9}{4}\)

\(\Leftrightarrow\)x≥\(\dfrac{3}{2}\)

 

29 tháng 6 2021

ĐKXĐ ; \(x\ne\pm1\)

Ta có : \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2+3}{1-x^2}=0\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}+\dfrac{-x^2-3}{x^2-1}=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2-x^2-3=0\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1-x^2-3=0\)

\(\Leftrightarrow-x^2+4x-3=0\)

\(\Leftrightarrow-x^2+3x+x-3=0\)

\(\Leftrightarrow-x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=1\left(L\right)\end{matrix}\right.\)

=> X = 3

Vậy ..

1 tháng 7 2017

Ta có : 17 - 14(x + 1) = 13 - 4(x + 1) - 5(x - 3)

<=> 17 - 14x - 14 = 13 - 4x - 4 - 5x + 15

<=> -14x + 3 = -9x + 24

<=> -14x + 9x = 24 - 3

<=> -5x = 21

=> x = -4,2

1 tháng 7 2017

Ta có :  5x + 3,5 + (3x - 4) = 7x - 3(x - 0,5)

<=>  5x + 3,5 + 3x - 4 = 7x - 3x + 1,5 

<=> 8x - 0,5 = 4x + 1,5

=> 8x - 4x = 1,5 + 0,5

=> 4x = 2

=> x = \(\frac{1}{2}\)

23 tháng 11 2023

\(\Leftrightarrow\left[\left(x+1\right)^2\right]^2+\left[\left(x-1\right)^2\right]^2=16\)

\(\Leftrightarrow\left(x^2+2x+1\right)^2+\left(x^2-2x+1^2\right)=16\)

\(\Leftrightarrow x^4+4x^2+1+4x^3+4x+2x^2+x^4+4x^2+1-4x^3-4x+2x^2=16\)

\(\Leftrightarrow2x^4+12x^2+2=16\)

\(\Leftrightarrow x^4+6x^2-7=0\)

Đặt \(x^2=t\ge0\)

\(\Rightarrow t^2+6t-7=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-7\left(loai\right)\end{matrix}\right.\)

\(t=1\Rightarrow x^2=1\Rightarrow x=\pm1\)