K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Điều kiện:  \(x\ge-1\)

\(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\)

\(\Leftrightarrow x^3+3x^2\sqrt{x+1}-4\sqrt{\left(x+1\right)^3}=0\)

Dễ thấy x = - 1 không phải là nghiệm của phương trình. Ta có

\(\frac{x^3}{\sqrt{\left(x+1\right)^3}}+\frac{3x^2}{\sqrt{\left(x+1\right)^2}}-4=0\)

Đặt \(\frac{x}{\sqrt{x+1}}=a\) thì ta được

\(a^3+3a-4=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{x}{\sqrt{x+1}}=1\\\frac{x}{\sqrt{x+1}}=-2\end{cases}}\)

Tới đây thì đơn giản rồi nhé.

20 tháng 5 2017

\(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\)

Đk:\(x\ge1\)

\(Pt\Leftrightarrow\left(x-\sqrt{x+1}\right)^3-3\sqrt{x+1}\left(x+1+x\sqrt{x+1}-2x^2\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x-1}\right)^3-3\sqrt{x+1}\left(\sqrt{x+1}+2x\right)\left(\sqrt{x+1}-x\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(x^2+4x\sqrt{x+1}+4x+4\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(x+2\sqrt{x+1}\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x+1}=0\\\left(x+2\sqrt{x+1}\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x+1}=0\\x+2\sqrt{x+1}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{x+1}\\x=-2\sqrt{x+1}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x^2=x+1\\x^2=4\left(x+1\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-x-1=0\\x^2-4x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=2-2\sqrt{2}\\x=\frac{1+\sqrt{5}}{2}\end{cases}}\) (thỏa mãn)