Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{x}+\sqrt{x+\sqrt{1-x}}=1\)(ĐK: \(0\le x\le1\))
\(\Leftrightarrow\sqrt{x+\sqrt{1-x}}=1-\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x+\sqrt{1-x}}\right)^2=\left(1-\sqrt{x}\right)^2\)
\(\Leftrightarrow x+\sqrt{1-x}=1-2\sqrt{x}+x\)
\(\Leftrightarrow\sqrt{1-x}=1-2\sqrt{x}\)(ĐK: \(0\le x\le\frac{1}{4}\))
\(\Leftrightarrow\left(\sqrt{1-x}\right)^2=\left(1-2\sqrt{x}\right)^2\)
\(\Leftrightarrow1-x=1-4\sqrt{x}+4x\)
\(\Leftrightarrow5x-4\sqrt{x}=0\)
\(\Leftrightarrow5x=4\sqrt{x}\)
\(\Leftrightarrow25x^2=16x\)
\(\Leftrightarrow25x^2-16x=0\)
\(\Leftrightarrow x\left(25x-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\25x-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=\frac{16}{25}\left(L\right)\end{cases}}\)
Vậy PT có nghiệm là x = 0
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
a) Ta có pt \(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\Leftrightarrow\left|x-3\right|=\sqrt{3}+1...\)
b) Ta có pt \(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=1\Leftrightarrow\left|x-1\right|+\left|x+2\right|=1\)
đến đây tự phá dấu trị tuyệt đối !
^_^
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(a,\sqrt{x-1-2\sqrt{x-2}}=1\)
\(\Leftrightarrow\sqrt{x-2-2\sqrt{x-2}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-1\right)^2}=1\)
\(\Leftrightarrow\left(\sqrt{\left(\sqrt{x-2}-1\right)^2}\right)^2=1^2\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2=1\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}-1=1\\\sqrt{x-2}-1=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=2\\\sqrt{x-2}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x-2}\right)^2=2^2\\\left(\sqrt{x-2}\right)=0^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=4\\x-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=6\\x=2\end{cases}}\)
a) \(\sqrt{x-1-2\sqrt{x-2}}\)=1
⇔\(\sqrt{x-2-2\sqrt{x-2}+1}\)=1
⇔\(\sqrt{\left(\sqrt{x-2}-1\right)^2}\)=1
⇔(\(\sqrt{\left(\sqrt{x-2}-1\right)^2}\))2=12
⇔(\(\sqrt{x-2}\)-1)2=1
⇔\(\left\{{}\begin{matrix}\sqrt{x-2}-1=1\\\sqrt{x-2}-1=-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}\sqrt{x-2}=2\\\sqrt{x-2}=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2=4\\x-2=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
Vậy phương trình có 2 nghiệm là x=6; x=2
b) \(\sqrt{x+\sqrt{x+5}}\)+\(\sqrt{x-\sqrt{x+5}}\)=2\(\sqrt{2}\) ( đk: x≥-5)
⇔ x+\(\sqrt{x^2-x-5}\)=4
⇔\(\sqrt{x^2-x-5}\)=4-x
⇔(\(\sqrt{x^2-x-5}\))2= ( 4-x)2
⇔x2-x-5= 16-8x+x2
⇔x2-x+8x-x2=16+5
⇔ 7x=21
⇔x=3 ( thỏa mãn điều kiện xác định)
1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v
a) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
Đặt \(t=\sqrt{x-1}\left(ĐK:t\ge0\right)\Leftrightarrow x-1=t^2\Leftrightarrow x=t^2+1\)
pt \(\Leftrightarrow\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}=2\Leftrightarrow\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}=2\Leftrightarrow t+1+t-1=2\Leftrightarrow t=1\left(tm\right)\)
Với t=1 \(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
Câu b tương tự
nếu vế phải là \(2\sqrt{2}\)thì làm như này:
Ta có: \(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)
\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\) (bình phương cả 2 vế rùi khai triển dựa trên hằng đẳng thức)
\(\Leftrightarrow2x+2x-2=8\Leftrightarrow4x=10\Leftrightarrow x=\frac{2}{5}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}+1\right)^2}-\sqrt{\left(\sqrt{x}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x}+1\right|-\left|\sqrt{x}-1\right|=2\)
Xét TH , làm nốt!