Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a)\(\sqrt{\left(1-x\right)^2}=x-1\)
\(\Leftrightarrow\left|1-x\right|=x-1\) dễ như bài lớp 6
b)\(\sqrt{1-x}+\sqrt{x+4}=3\)
\(\Leftrightarrow\sqrt{1-x}-\left(-\frac{1}{3}x+1\right)+\sqrt{x+4}-\left(\frac{1}{3}x+2\right)=3\)
\(\Leftrightarrow\frac{1-x-\left(-\frac{1}{3}x+1\right)^2}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{x+4-\left(\frac{1}{3}x+2\right)^2}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow\frac{-\left(x^2+3x\right)}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{-\left(x^2+3x\right)}{\sqrt{x+4}+\frac{1}{3}x+2}=0\)
\(\Leftrightarrow-\left(x^2+3x\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
\(\Leftrightarrow-x\left(x+3\right)\left(\frac{1}{\sqrt{1-x}+\left(-\frac{1}{3}x+1\right)}+\frac{1}{\sqrt{x+4}+\frac{1}{3}x+2}\right)=0\)
Pt to dài trong ngoặc >0
Suy râ x=0;x=-3
câu 1;2a dễ,tự làm đi
câu 2b:
\(\Leftrightarrow5+2\sqrt{4-3x-x^2}=9\)
\(\Leftrightarrow\sqrt{4-3x-x^2}=2\)
<=>3x-x2=0
\(\sqrt{x-2}+\sqrt{x-7}=\sqrt{x-10}+\sqrt{x+5}\)
\(\Leftrightarrow\left(\sqrt{x-2}-3\right)+\left(\sqrt{x-7}-2\right)+\left(1-\sqrt{x-10}\right)+\left(4-\sqrt{x+5}\right)=0\)
\(\Leftrightarrow\frac{x-11}{\sqrt{x-2}+3}+\frac{x-11}{\sqrt{x-7}+2}-\frac{x-11}{\sqrt{x-10}+1}-\frac{x-11}{\sqrt{x+5}+4}=0\)
\(\Leftrightarrow\left(x-11\right)\left(\frac{1}{\sqrt{x-2}+3}+\frac{1}{\sqrt{x-7}+2}-\frac{1}{\sqrt{x-10}+1}-\frac{1}{\sqrt{x+5}+4}\right)=0\)
\(\Leftrightarrow x=11\)
nhân cả 2 vế vs căn 2 sau đó cố gắng đưa mấy cá dưới dấu căn về bình phương của 1 số sao đó bỏ dấu căn ( đừng quên đk của x nhé )
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
sử dụng bdt buinhia
\(\left(\sqrt{x-5}+\sqrt{7-x}\right)^2\le\left(1^2+1^2\right)\left(x-5+7-x\right)=4\)
\(\Rightarrow\sqrt{x-5}+\sqrt{7-x}\le2\)
dấu "=" xảy ra khi x=6
\(\sqrt{x-5}+\sqrt{7-x}=2\)
\(\Leftrightarrow x-5+7-x+2\sqrt{\left(x-5\right)\left(7-x\right)}=4\)
\(\Leftrightarrow2\sqrt{\left(x-5\right)\left(7-x\right)}=2\)
\(\Leftrightarrow\left(x-5\right)\left(7-x\right)=1\)
\(\Leftrightarrow12x-x^2-36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x=6\)