Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\Leftrightarrow3x-1-x\sqrt{3x-1}+x\sqrt{x+1}-\sqrt{\left(x+1\right)\left(3x-1\right)}=0\)
\(\Leftrightarrow\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)-\sqrt{x+1}\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=\sqrt{x+1}\\\sqrt{3x-1}=x\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(ĐK:x\ge2\\ PT\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+3=3\sqrt{x-1}+\sqrt{x-2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{x-2}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow ab+3=3a+b\\ \Leftrightarrow3a-3+b-ab=0\\ \Leftrightarrow3\left(a-1\right)-b\left(a-1\right)=0\\ \Leftrightarrow\left(3-b\right)\left(a-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\Rightarrow x-1=1\Rightarrow x=2\left(tm\right)\\b=3\Rightarrow x-2=9\Rightarrow x=11\left(tm\right)\end{matrix}\right.\)
Vậy \(x\in\left\{2;11\right\}\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.
dạ vâng,em cx không bt có sai ko do đây là đề của thầy em đưa,chắc cx có sai sót mong thầy bỏ qua
Lời giải:
Đặt $\sqrt[3]{x^2+3x-5}=a; \sqrt[3]{x+2}=b$. Khi đó pt đã cho tương đương với:
$a+b=\sqrt[3]{a^3+b^3-1}+1$
$\Leftrightarrow a+b-1=\sqrt[3]{a^3+b^3-1}$
$\Leftrightarrow (a+b-1)^3=a^3+b^3-1$
$\Leftrightarrow (a+b)^3-3(a+b)^2+3(a+b)-1=a^3+b^3-1$
$\Leftrightarrow 3ab(a+b)-3(a+b)^2+3(a+b)=0$
$\Leftrightarrow ab(a+b)-(a+b)^2+(a+b)=0$
$\Leftrightarrow (a+b)(ab-a-b+1)=0$
$\Leftrightarrow (a+b)(a-1)(b-1)=0$
Nếu $a+b=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=-\sqrt[3]{x+2}$
$\Leftrightarrow x^2+3x-5=-(x+2)$
$\Leftrightarrow x^2+4x-3=0$
$\Leftrightarrow x=-2\pm \sqrt{7}$
Nếu $a-1=0\Leftrightarrow \sqrt[3]{x^2+3x-5}=1$
$\Leftrightarrow x^2+3x-6=0$
$\Leftrightarrow x=\frac{-3\pm \sqrt{33}}{2}$
Nếu $b-1=0\Leftrightarrow \sqrt[3]{x+2}=1$
$\Leftrightarrow x=-1$
\(\sqrt{3x+1}+2\sqrt{x+3}=3\sqrt{5x-1}\)
=>\(\sqrt{3x+1}-2+2\sqrt{x+3}-4=3\sqrt{5x-1}-6\)
=>\(\dfrac{3x+1-4}{\sqrt{3x+1}+2}+2\left(\sqrt{x+3}-2\right)-3\left(\sqrt{5x-1}-2\right)=0\)
=>\(\dfrac{3\left(x-1\right)}{\sqrt{3x+1}+2}+2\cdot\dfrac{x+3-4}{\sqrt{x+3}+2}-3\cdot\dfrac{5x-1-4}{\sqrt{5x-1}+2}=0\)
=>\(\left(x-1\right)\left(\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{2}{\sqrt{x+3}+2}-\dfrac{15}{\sqrt{5x-1}+2}\right)=0\)
=>x-1=0
=>x=1
\(pt\Leftrightarrow\sqrt{3x-2}-1+\sqrt{x+3}-2=x^3+3x-4\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{3x-2}+1}+\frac{1}{\sqrt{x+3}+2}-x^2-x-4\right)=0\)
\(\Leftrightarrow x=1\)
cái vế sau mk chưa giải bạn nghĩ nốt nhá
Cảm ơn bn nhiều