K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt x^2+3x=a

=>\(a+2=3\sqrt{a}\)

=>a-3 căn a+2=0

=>(căn a-1)(căn a-2)=0

=>a=1 hoặc a=4

=>x^2+3x=1 hoặc x^2+3x=4

=>(x+4)(x-1)=0 và x^2+3x-1=0

=>\(x\in\left\{1;-4;\dfrac{-3+\sqrt{13}}{2};\dfrac{-3-\sqrt{13}}{2}\right\}\)

 

 

1 tháng 10 2021

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

1 tháng 10 2021

ghê thậc, còn cái còn lại thì seo?

26 tháng 10 2021

\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)

Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)

\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)

Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm

Vậy PT có nghiệm duy nhất \(x=1\)

6 tháng 8 2018

cho mk bỏ 2x ở cuôi nha 

6 tháng 8 2018

\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2x.\) Điều kiện: \(\orbr{\begin{cases}x\ge1\\x\le-2\end{cases}}\)

Do VT \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)Kết hợp với điều kiện ta có \(x\ge1\)

\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2x.\)

\(\Leftrightarrow2\sqrt{x\left(x-1\right)}+2\sqrt{x\left(x+2\right)}=4x.\)

\(\Leftrightarrow2x-2\sqrt{x\left(x-1\right)}+2x-2\sqrt{x\left(x+2\right)}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x\left(x-1\right)}+x-1\right)+\left(x-2\sqrt{x\left(x+2\right)}+x+2\right)-1=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{x-1}\right)^2+\left(\sqrt{x}-\sqrt{x+2}\right)^2=1\)

14 tháng 1 2017

\(\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(1+\sqrt{x^2-x-2}\right)=3\left(DKXD:x\ge2\right)\)\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(\sqrt{x+1}+\sqrt{x-2}\right)\left(1+\sqrt{x\left(x-2\right)+\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)\(\Leftrightarrow\left\{\left(x+1\right)-\left(x-2\right)\right\}\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)

\(\Leftrightarrow3\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)

\(\Leftrightarrow\sqrt{x+1}-\sqrt{\left(x+1\right)\left(x-2\right)}+\sqrt{x-2}-1=0\)

\(\Leftrightarrow-\left(\sqrt{x+1}-1\right)\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=1\\\sqrt{x-2}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\left(loai\right)\\x=3\left(nhan\right)\end{cases}}}\)

Vậy...

14 tháng 1 2017

Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x-2}=b\end{cases}}\left(a,b\ge0\right)\) thì ta có

\(\hept{\begin{cases}a^2-b^2=3\left(1\right)\\\left(a-b\right)\left(1+ab\right)=3\left(2\right)\end{cases}}\)

Lấy (1) - (2) vế theo vế ta được

\(a^2-b^2-\left(a-b\right)\left(1+ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-1-ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(1-a\right)\left(b-1\right)=0\)

Với a = b

\(\Leftrightarrow\sqrt{x+1}=\sqrt{x-2}\)

\(\Leftrightarrow x+1=x-2\Leftrightarrow0x=3\left(l\right)\)

Với a = 1

\(\Leftrightarrow\sqrt{x+1}=1\Leftrightarrow x=0\left(l\right)\)

Với b = 1

\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x=3\)

Vậy PT có nghiệm là x = 3

1 tháng 10 2021

\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(đk:x\ge0\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(\sqrt{x+3}+\sqrt{x+1}\right)\left(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}\right)}{\sqrt{x+3}+\sqrt{x+1}}=2x\)

\(\Leftrightarrow\dfrac{\left(x+3-x-1\right)\left(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}\right)}{\sqrt{x+3}+\sqrt{x+1}}=2x\)

\(\Leftrightarrow\dfrac{x^2+\sqrt{\left(x+1\right)\left(x+3\right)}}{\sqrt{x+3}+\sqrt{x+1}}=x\)

\(\Leftrightarrow x\sqrt{x+3}+x\sqrt{x+1}-x^2-\sqrt{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(x-\sqrt{x+1}\right)-x\left(x-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(\sqrt{x+3}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{x+1}\\x=\sqrt{x+3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\left(tm\right)\\x=\dfrac{1-\sqrt{5}}{2}\left(ktm\right)\\x=\dfrac{1+\sqrt{13}}{2}\left(tm\right)\\x=\dfrac{1-\sqrt{13}}{2}\left(ktm\right)\end{matrix}\right.\)

\(x=-1\)Giao lưu thôi nhé

15 tháng 1 2017

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x^2+7x+10}+1\right)=3\)

\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{\left(x+5\right)\left(x+2\right)}+1\right)=3\)

Đặt \(\hept{\begin{cases}\sqrt{x+5}=a\left(a\ge0\right)\\\sqrt{x+2}=b\left(b\ge0\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1\right)=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1-a-b\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\end{cases}}\)

Với a = b thì

\(\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow0x=3\left(l\right)\)

Với a = 1 thì

\(\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)

Với b = 1 thì

\(\sqrt{x+2}=1\Leftrightarrow x=-1\)