Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, <=> (x-1)^3 + x^2(x-1)=0
<=> (x-1)(x^2-2x+1+x^2)=0
<=> (x-1)(2x^2-2x+1)=0
=> x=1
2x^2-2x+1=0 (*)
giải (*):
2x^2-2x+1=0
<=> (x-1)^2 + x^2 > 0
=> * vô nghiệm
=> Pt có nghiệm là 1.
b, x^2+x-12=0
<=> (x-3)(x+4)=0
=> x=3 hoặc x = -4
vậy....
c, 6x^2-11x-10=0
<=> (x-5/2)(6x+4)=0
=> x=5/2 hoặc x= -2/3.
vậy...
a) Ta có: \(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)hay x=1
Vậy: S={1}
c) Ta có: \(x+x^4=0\)
\(\Leftrightarrow x\left(x^3+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)=0\)
mà \(x^2-x+1>0\forall x\)
nên x(x+1)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: S={0;-1}
bạn phải phân tích đa thức thành nhân tử để hạ bậc. Một mẹo mình mách bạn thế này . bạn tìm một giá trị của x thỏa mãn thì dựa vào đó đó phân tich. Thông thường giá trị đó là ước của hằng số trong vế trái ví dụ câu a bạn thay ước của 12. mình thấy -1 thỏa mãn vậy khi phân tích đa thức thành nhân tử chắc chắn sẽ xuất hiện nhân tử là x+1 và dựa vào đó mình phân tích như sau:
x3-6x2+5x+12=0
<=> x3+x2-7x2-7x+12x+12=0
<=> (x3+x2)-(7x2+7x)+(12x+12)=0
<=> x2(x+1)-7x(x+1)+12(x+1)=0
<=> (x+1)(x2-7x+12)=0
Phân tích tiếp nhóm x2-7x+12 = x2-3x-4x+12 = x(x-3)-4(x-3) = (x-3)(x-4)
vậy phương trình tương đương
<=> (x+1)(x-3)(x-4) = 0
đến đây dễ dàng suy ra x = -1; 3; 4
Các câu còn lại tương tự bạn tự làm vì quá nhiều mình không gõ được
a, \(x^4-6x^3+11x^2-6x+1=0\)
\(\Rightarrow\left(x^2-3x+1\right)^2=0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)
Chúc bạn học tốt
\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)
\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)
\(\left(x^2-3x+1\right)^2=0\)
tự làm
B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)
\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)
\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)
\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)
\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)
\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)
câu C nghĩ đã
a, \(x^4-6x^3+11x^2-6x+1=0\)
=> \(x^4-6x^3+9x^2+2x^2-6x+1=0\)
=> \(x^2+3x+1=0\)
=> \(\Delta\) =\(b^2-4c\)
=\(3^2.4=5\)
Nên \(\sqrt{\Delta}=5\)
x= \(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{5}}{2}\)
hoặc x= \(\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{5}}{2}\)
a) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{1}{3}\right\}\)
b) Ta có: \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy: S={2;3}
c) Ta có: \(x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy: S={1;2}
d) Ta có: \(2x^2-6x+1=0\)
\(\Leftrightarrow2\left(x^2-3x+\dfrac{1}{3}\right)=0\)
mà \(2\ne0\)
nên \(x^2-3x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{23}{12}=0\)
\(\Leftrightarrow\left(x-\dfrac{3}{2}\right)^2=\dfrac{23}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{69}}{6}\\x-\dfrac{3}{2}=\dfrac{-\sqrt{69}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9+\sqrt{69}}{6}\\x=\dfrac{9-\sqrt{69}}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{9+\sqrt{69}}{6};\dfrac{9-\sqrt{69}}{6}\right\}\)
e) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-10x-2x+5=0\)
\(\Leftrightarrow2x\left(2x-5\right)-\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};\dfrac{1}{2}\right\}\)
c: =>(x+2)(x+3)(x-5)(x-6)=180
=>(x^2-3x-10)(x^2-3x-18)=180
=>(x^2-3x)^2-28(x^2-3x)=0
=>x(x-3)(x-7)(x+4)=0
=>\(x\in\left\{0;3;7;-4\right\}\)
c: =>(x-3)(x+2)(2x+1)(3x-1)=0
=>\(x\in\left\{3;-2;-\dfrac{1}{2};\dfrac{1}{3}\right\}\)
b)x^3 - 6x^2 +11x-6=0
<=>x^3 - x^2 - 5x^2 +5x + 6x - 6=0
<=>x^2(x - 1) - 5x(x - 1) +6(x - 1)=0
<=>(x-1).(x^2 - 5x + 6)=0
<=>(x - 1).(x^2 - 2x - 3x + 6)=0
<=>(x - 1).[(x(x-2)-3(x-2)]=0
<=>(x-1)(x-2)(x-3)=0
<=>x-1=0hoac x-2=0 hoac x-3=0
<=>x=1hoac x=2 hoac x=3