Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
a) ĐKXĐ : \(x\ge5\)
Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))
Khi đó phương trình thành a + b = 2
Lại có \(b^3+a^2=-2\)
=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)
a = 5 => x = 30 (tm)
Vậy x = 30 là nghiệm phương trình
d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)
<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)
<=> |5x - 2| + |5x - 4| = 2
Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)
Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)
Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình
a/ Điều kiện xác định : \(x\ge2\)
\(\sqrt{3x-5}=3+\sqrt{x-2}\)
\(\Leftrightarrow\left(\sqrt{3x-5}\right)^2=\left(3+\sqrt{x-2}\right)^2\)
\(\Leftrightarrow3x-5=9+x-2+6\sqrt{x-2}\)
\(\Leftrightarrow x-6=3\sqrt{x-2}\)
\(\Leftrightarrow\left(x-6\right)^2=9\left(x-2\right)\)
\(\Leftrightarrow x^2-12x+36=9x-18\)
\(\Leftrightarrow x^2-21x+54=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-18\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=18\end{cases}}\) (TM)
Vậy..........................................................
b/ ĐKXĐ : \(x\ge\frac{2}{5}\)
\(\sqrt{25x^2-4}=2\sqrt{5x-2}\)
\(\Leftrightarrow25x^2-4=4\left(5x-2\right)\) (bình phương hai vế )
\(\Leftrightarrow25x^2-20x+4=0\)
\(\Leftrightarrow\left(5x-2\right)^2=0\Leftrightarrow x=\frac{2}{5}\) (TM)
Vậy ................................................
@Nguyễn Huy Thắng@Mysterious Person@bảo nam trần@Lightning Farron@Thiên Thảo@Sky SơnTùng
tự tìm đkxđ
\(\Leftrightarrow\left(4x^3-8x^2+4x\right)+\left(-17x^2+39x-22\right)+\left(x+\sqrt{3x-2}-\sqrt{3x-2}\right)=0\)
\(\Leftrightarrow4x.\left(x-1\right)^2+\left(x-1\right)\left(-17x+22\right)+\sqrt{3x-2}\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x^2-4x-17x+22+\sqrt{3x-2}\right)=0\)
\(\Leftrightarrow x=1\) tự chứng minh vế kia >=0 đi :D
3. ĐK: \(x^2-2x-1\ge0\Leftrightarrow x\le1-\sqrt{2}\text{ hoặc }x\ge1+\sqrt{2}\)
\(pt\Leftrightarrow\sqrt[3]{x^3-14}-\left(x-2\right)+2\sqrt{x^2-2x-1}=0\)
Ta sẽ chứng minh phương trình này có \(VT\ge VP\)
\(VT\ge\frac{x^3-14-\left(x-2\right)^3}{A^2+AB+B^2}+0\text{ }\left(A=\sqrt[3]{x^3-14};\text{ }B=x-2\right)\)
\(=\frac{6\left(x^2-2x-1\right)}{\left(A+\frac{B}{2}\right)^2+\frac{3B^2}{4}}\ge0=VP\text{ }\left(do\text{ }x^2-2x-1\ge0\right)\)
Dấu "=" xảy ra khi \(x^2-2x-1=0\Leftrightarrow x=1+\sqrt{2}\text{ hoặc }x=1-\sqrt{2}\)
\(\text{Kết luận: }x\in\left\{1+\sqrt{2};\text{ }1-\sqrt{2}\right\}\)
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
Điều kiện: 3x - 2 \(\ge0\) <=> x \(\ge\frac{2}{3}\)
pt <=> \(22x^2-43x^2+43x+x\sqrt{3x-2}-\sqrt{3x-2}-22=0\)
<=> \(\left(22x^2-22\right)+\left(43x-43x^2\right)+\left(x\sqrt{3x-2}-\sqrt{3x-2}\right)=0\)
<=> \(22.\left(x-1\right)\left(x+1\right)+43x\left(1-x\right)+\sqrt{3x-2}.\left(x-1\right)=0\)
<=> \(\left(x-1\right).\left(22x+22-43x+\sqrt{3x-2}\right)=0\)
<=> x-1 = 0 hoặc \(22-21x+\sqrt{3x-2}=0\)
+) x - 1 = 0 => x = 1 (thoả mãn)
+) \(22-21x+\sqrt{3x-2}=0\Leftrightarrow\sqrt{3x-2}=21x-22\) (*)
Điều kiện : 21x - 22 \(\ge\) 0
(*) <=> 3x - 2 = (21x - 22)2 <=> 3x - 2 = 441x2 - 924x + 484 <=> 441x2 - 927x + 486 = 0
Vì 441 - 927 + 486 = 0 => ptrinh có 1 nghiệm x1 = 1 (loại); x2 = \(\frac{486}{441}\) (thoả mãn)
vậy phương trình đã cho có 2 nghiệm là: x = 1; x = \(\frac{486}{441}\)