\(3\sqrt{3}\left(x^2+4x+2\right)-\sqrt{x+8}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

a)\(pt\Leftrightarrow\sqrt{x^2+1}=\frac{2x^2-2x+2}{4x-1}\)

\(\Leftrightarrow x^2+1=\frac{4x^4-8x^3+12x^2-8x+4}{16x^2-8x+1}\)

\(\Leftrightarrow\left(x^2+1\right)\left(16x^2-8x+1\right)=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow16x^4-8x^3+17x^2-8x+1=4x^4-8x^3+12x^2-8x+4\)

\(\Leftrightarrow\left(3x^2-1\right)\left(4x^2+3\right)=0\Rightarrow x=\frac{1}{\sqrt{3}}\)

b)\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)

\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2\left(x^2-3x+2\right)\)

Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{x^2-2x+4}=b\end{cases}\left(a;b\ge0\right)}\) thì

\(\Rightarrow b^2-a^2=x^2-3x+2\)

Làm nốt 

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

12 tháng 8 2017

câu 2 đề sai

12 tháng 8 2017

ok tớ sẽ giải nhunh ! sửa câu 2 đi rồi tớ sẽ làm cho bn !

câu 1 ) thì đúng

câu 2 sai đề

3 tháng 7 2020

\(ĐK:\orbr{\begin{cases}x\le1-\sqrt{2}\\1+\sqrt{2}\le x\le3\end{cases}}\)

\(\sqrt{2x^2-4x-2}+\left(x-1\right)^2\sqrt{12x-4}=\left(8-x\right)\sqrt{3-x}\)\(\Leftrightarrow\sqrt{2x^2-4x-2}-\sqrt{3-x}+\left(2x^2-3x-5\right)\sqrt{3-x}=0\)\(\Leftrightarrow\frac{2x^2-3x-5}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\left(2x^2-3x-5\right)\sqrt{3-x}=0\)\(\Leftrightarrow\left(2x^2-3x-5\right)\left(\frac{1}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\sqrt{3-x}\right)=0\)(*)

Mà ta có thể thấy được: \(\frac{1}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\sqrt{3-x}>0\)nên từ phương trình (*) suy ra \(2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)(t/m điều kiện)

Vậy phương trình có tập nghiệm \(S=\left\{-1;\frac{5}{2}\right\}\)

4 tháng 7 2020

thấy sai sai)):

24 tháng 8 2018

\(x^2+2x-28+8-\sqrt{2x^2+4x+8}=0\)

\(x^2+2x-28+\frac{64-2x^2-4x-8}{8+\sqrt{2x^2+4x+8}}=0\)

\(x^2+2x-28+\frac{-2\left(x^2+2x-28\right)}{8+\sqrt{2x^2+4x+8}}=0\)

\(\left(x^2+2x-28\right)\left(1-\frac{2}{8+\sqrt{2x^2+4x+8}}\right)=0\)

mà \(1-\frac{2}{8+\sqrt{2x+4x+8}}\ne0\Rightarrow x^2+2x-28=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1-\sqrt{29}\\x=-1+\sqrt{29}\end{cases}}\)

24 tháng 8 2018

phần b nx bạn ơi