Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk : x khác -1 ; 3
\(\Rightarrow4x-x\left(x+1\right)=x\left(x-3\right)\Leftrightarrow4x-x^2-x=x^2-3x\)
\(\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Leftrightarrow x=0\left(tm\right);x=3\left(ktm\right)\)
\(ĐK:x\ne-1;x\ne3\)
\(\Leftrightarrow\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=\dfrac{x}{2\left(x+1\right)}+\dfrac{x}{2\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}=\dfrac{x\left(x-3\right)+x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}\)
\(\Rightarrow4x=x^2-3x+x^2+x\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=3\left(l\right)\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)
\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
d) Xem lại đề
\(\Rightarrow x^3+2x^2+2x^2+4x+x+2=0\Rightarrow x^2\left(x+2\right)+2x\left(x+2\right)+x+2=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)\left(x+1\right)=0\Rightarrow\left(x+2\right)\left(x+1\right)^2=0\)
=> x + 2 = 0 hoặc x +1 = 0
=> x = -2 ; x = - 1
a: Để đây là phương trình bậc nhất một ẩn thì 2m+1<>0
=>m<>-1/2
b: 2x+3=4
=>x=1/2
Thay x=1/2 vào (1), ta đc:
1/2(2m+1)+2m-3=0
=>m+1/2+2m-3=0
=>3m-5/2=0
=>m=5/6
\(\Leftrightarrow\dfrac{2\left(x-2\right)\left(x+2\right)-x\left(2x+3\right)}{2x\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{2\left(x^2-4\right)-2x^2-3x}{2x\left(x-2\right)}=0\)
\(\Leftrightarrow2x^2-8-2x^2-3x=0\)
\(\Leftrightarrow-3x=8\)
\(\Leftrightarrow x=-\dfrac{8}{3}\)
\(\dfrac{x+2}{x}-\dfrac{2x+3}{2\left(x-2\right)}=0\left(ĐKXĐ:x\ne0;x\ne2\right)\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)\left(x+2\right)}{2x\left(x-2\right)}-\dfrac{x\left(2x+3\right)}{2x\left(x-2\right)}=0\)
\(\Rightarrow2\left(x^2-4\right)-2x^2-3x=0\)
\(\Leftrightarrow2x^2-8-2x^2-3x=0\)
\(\Leftrightarrow-3x-8=0\)
\(\Leftrightarrow x=\dfrac{-8}{3}\) (nhận).
-Vậy \(S=\left\{\dfrac{-8}{3}\right\}\)