\(x^4+\sqrt{x^2+2014}=2014\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

đặt a = x^2 
b = -căn(x^2 + 2014) 
=> a^2 - b = 2014 
và :b^2 = a+2014 
=> (a-b).(a+b+1) = 0 

6 tháng 5 2019

\(\Leftrightarrow x^4\left(\sqrt{x+3}-2\right)+2014\left(x-1\right)=0\)

\(\Leftrightarrow x^4\cdot\frac{x-1}{\sqrt{x+3}+2}+2014\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x^4}{\sqrt{x+3}+2}+2014\right)=0\)

Dễ thấy \(\left(\frac{x^4}{\sqrt{x+3}+2}+2014\right)\ne0\)

\(\Rightarrow x=1\)

Học tốt

19 tháng 5 2018

x^2=t≥0

t^2+√(t+2014)=2014

√(t+2014)=a; a≥√2014

a^2=t+2014(1)

t^2+a=2014(2)

(1)-(2)

(a-t)(a+t)=-(a-t)

th1

a=t; =>t≥√2014

(2)=>t^2+t-2014=0

∆=1+4.2014

t=(√(1+4.2014)-1)/2

x=±√t

th2

a+t=-1

a=-t-1=>0≤t≤√(2014)-1

t^2-t-2015=0

(tu gq tiep)

10 tháng 7 2016

\(\sqrt{x+123234048-22012\sqrt{x+2102012}}\)

\(=\sqrt{x+2102012-2.11006\sqrt{x+2102012}+121132036}\)

\(=\sqrt{\left(\sqrt{x+2102012}-11006\right)^2}\)

\(=\left|\sqrt{x+2102012}-11006\right|\)

\(\sqrt{x+103426368-20132\sqrt{x+2102012}}\)

\(=\sqrt{x+2102012-2.10066.\sqrt{x+2102012}+101324356}\)

\(=\sqrt{\left(\sqrt{x+2102012}-10066\right)^2}\)

\(=\left|\sqrt{x+2102012}-10066\right|\) 

Bạn thế vào pt rồi chia trường hợp 

2 tháng 9 2020

b) \(x^4+\sqrt{x^2+2014}=2014\)

\(\Leftrightarrow4x^4+4\sqrt{x^2+2014}=8056\)

\(\Leftrightarrow4x^4=8056-4\sqrt{x^2+2014}\)

\(\Leftrightarrow4x^4+4x^2+1=4x^2+8056-4\sqrt{x^2+2014}+1\)

\(\Leftrightarrow\left(2x^2+1\right)^2=\left(2\sqrt{x^2+2014}-1\right)^2\)

Đến đây quen thuộc rồi nhé !

Câu a) bạn tham khảo ở link này mình đã làm : https://olm.vn/hoi-dap/detail/12190742084.html

NV
13 tháng 6 2020

c/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

13 tháng 6 2020

aaa là \(\sqrt{x+3}\) cháu gõ lộn

23 tháng 10 2016

Đặt \(a=2x^2+x-2014\) , \(b=x^2-5x-2013\)

thì \(a^2+4b^2=4ab\Leftrightarrow a^2-4ab+4b^2=0\Leftrightarrow\left(a-2b\right)^2=0\)

Thay vào được \(\left[\left(2x^2+x-2014\right)-2\left(x^2-5x-2013\right)\right]^2=0\)

\(\Leftrightarrow11x+2012=0\Leftrightarrow x=-\frac{2012}{11}\)