Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
\(4\left(\frac{x^2}{2}+5x+4\right)^2\)=\(4\left(2x+1\right)\left(x^2+8x+7\right)\)
\(\Leftrightarrow\left(x^2+10x+8\right)^2=4\left(2x+1\right)\left(x^2+8x+7\right)\)
dat \(2x+1=a,x^2+8x+7=b\) \(\Rightarrow a+b=x^2+10x+8\)
pt tro thanh
\(\left(a+b\right)^2=4ab\Rightarrow a^2+2ab+b^2-4ab=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\Leftrightarrow2x+1=x^2+8x+1\)
\(\Leftrightarrow x^2+6x=0\Leftrightarrow x\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
a/ ĐXĐK: ...
\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)
\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)
\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))
\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)
d/
\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)
Đặt \(\sqrt{x^2+x+1}=a\)
\(\Leftrightarrow3x^2-5ax+2a^2=0\)
\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)
Ta có: \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2013}\right)\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-y-\sqrt{y^2+2013}=x-\sqrt{x^2+2013}\)
⇔\(x+y=\sqrt{x^2+2013}-\sqrt{y^2+2013}\)(1)
Nhân liên hợp tương tự nhân \(y-\sqrt{y^2+2013}\)vào hai về rút được
\(x+y=\sqrt{y^2+2013}-\sqrt{x^2+2013}\)(2)
Cộng vế theo vế (1)(2) ta được \(x+y=0\Rightarrow x=-y\)
Thay vào \(A=\left(-y\right)^{2014}-y^{2014}+1=1\)
Đặt \(a=2x^2+x-2014\) , \(b=x^2-5x-2013\)
thì \(a^2+4b^2=4ab\Leftrightarrow a^2-4ab+4b^2=0\Leftrightarrow\left(a-2b\right)^2=0\)
Thay vào được \(\left[\left(2x^2+x-2014\right)-2\left(x^2-5x-2013\right)\right]^2=0\)
\(\Leftrightarrow11x+2012=0\Leftrightarrow x=-\frac{2012}{11}\)