Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
Giải phương trình: \(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}.\left(x+5\right)\)
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
<=> 3 = 0 (vô lý)
=> pt vô nghiệm.
c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)
d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))
\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)
Vậy pt vô nghiệm.
Đặt \(\hept{\begin{cases}\sqrt{2x^2+7x+10}=a\left(a>0\right)\\\sqrt{2x^2+x+4}=b\left(b>0\right)\end{cases}}\)
Ta có \(a^2-b^2=6x+6\)
Từ đó PT ban đầu thành
\(a+b=\frac{a^2-b^2}{2}\)
\(\Leftrightarrow2\left(a+b\right)-\left(a^2-b^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(2-a+b\right)=0\)
\(\Leftrightarrow a=2+b\)
\(\Leftrightarrow\sqrt{2x^2+7x+10}=2+\sqrt{2x^2+x+4}\)
\(\Leftrightarrow3x+1=2\sqrt{2x^2+x+4}\)
\(\Leftrightarrow x^2+2x-15=0\)
\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
)2+3(x+1)2{7x2−22x+28=(2x−1)2+3(x−3)27x2+8x+13=(2x−1)2+3(x+2)231x2+14x+4=7(2x−1)2+3(x+1)2
Do đó:
VT≥3–√|3−x|+3–√|x+2|+3–√|x+1|≥3–√(3−x)+3–√(x+2)+3–√(x+1)=33–√(x+2)VT≥3|3−x|+3|x+2|+3|x+1|≥3(3−x)+3(x+2)+3(x+1)=33(x+2)
to gefhfhdgtggg
GGGGGG
GGGGG
G
G
G
G
G
G
G
G
G
G
GG
GG
G
G
G
G
G
GG
G
GGG
G
G
G
G
G
G
G
G
G
G
GG
G
G
G
G
G
G
G
GG
G
GG
G
G
G
G
G
G
G
G
G
G
G
G
G
GG
GG
G
G
G
GG
GGGGG
G
G
G
G
G
G
G
GGGGG
G
G
GG
GG
GG
G
G
G
GGG
G
G
GG
G
GGG
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
GG
GG
G
G
GG
F
E
RE
R
ER
\\\\\\]
YYYYYYYYY
CMMCMMCMMCMMCMMMCMCMMCMCMCMC
N
G
U
V
L
AHIHI
\(x^3-x^2-7x+18=4\sqrt{x+2}\) (ĐK: \(x\ge-2\))
\(\Leftrightarrow x^3-x^2-8x+12+x+6-4\sqrt{x+2}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x+3\right)+\dfrac{\left(x+6\right)^2-16\left(x+2\right)}{x+6+4\sqrt{x+2}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x+3\right)+\dfrac{x^2-4x+4}{x+6+4\sqrt{x+2}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x+3+\dfrac{1}{x+6+4\sqrt{x+2}}\right)=0\)
\(\Leftrightarrow x-2=0\) (vì \(x\ge-2\))
\(\Leftrightarrow x=2\) (thỏa mãn)