\(x^3-x^2-21x+45=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

Ta có : \(x^3-x^2-21x+45=0\)

=> \(x^3-3x^2+2x^2-6x-15x+45=0\)

=> \(x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)=0\)

=> \(\left(x^2+2x-15\right)\left(x-3\right)=0\)

=> \(\left(x^2+3x-5x-15\right)\left(x-3\right)=0\)

=> \(\left(x\left(x+3\right)-5\left(x+3\right)\right)\left(x-3\right)=0\)

=> \(\left(x-5\right)\left(x+3\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x-5=0\\x-3=0\\x+3=0\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=5\\x=3\\x=-3\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 5, x = -3, x = 3 .

20 tháng 2 2020

x^3 - x^2 - 21x + 45 = 0

=>x^3 + 5x^2 - 6x^2 - 30x + 9x + 45 = 0

=>  x^2(x + 5) - 6x(x + 5) + 9(x + 5) = 0

=> (x^2 - 6x + 9)(x + 5) = 0

=> (x - 3)^2(x + 5) = 0

=> x - 3 = 0 hoặc x + 5 = 0

=> x = 3 hoặc x = -5

20 tháng 2 2020

Ta có: x3−x2+x−1=0

x2(x−1)+(x−1)=0

⇔(x−1)(x2+1)=0(1)

Ta có: x2≥0∀x

x2+1≥1≠0∀x(2)

Từ (1) và (2) suy ra x−1=0

x=1Ta có: x3−x2+x−1=0

x2(x−1)+(x−1)=0

⇔(x−1)(x2+1)=0(1)

Ta có: x2≥0∀x

x2+1≥1≠0∀x(2)

Từ (1) và (2) suy ra x−1=0

x=1

14 tháng 7 2017

a. \(x^3-x^2-21x+45=0\Rightarrow\left(x^3+5x^2\right)-\left(6x^2+30x\right)+\left(9x+45\right)=0\)

\(\Rightarrow x^2\left(x+5\right)-6x\left(x+5\right)+9\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(x-3\right)^2=0\Rightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)

Vậy x=-5 hoặc x=3

b. \(2x^3-5x^2+8x-3=0\Rightarrow\left(2x^3-x^2\right)-\left(4x^2-2x\right)+\left(6x-3\right)=0\)

\(\Rightarrow x^2\left(2x-1\right)-2x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)\left(x^2-2x+3\right)=0\Rightarrow2x-1=0\)do \(x^2-2x+3\ne0\forall x\)

\(\Rightarrow x=\frac{1}{2}\) 

17 tháng 3 2020

+ Ta có: \(x^3-x^2-21x+45=0\)

\(\Leftrightarrow\left(x^3+5x^2\right)-\left(6x^2+30x\right)+\left(9x+45\right)=0\)

\(\Leftrightarrow x^2.\left(x+5\right)-6x.\left(x+6\right)+9.\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right).\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x+5\right).\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(TM\right)\\x=3\left(TM\right)\end{matrix}\right.\)

Vậy \(S=\left\{-5,3\right\}\)

+ Ta có: \(\left(x^2-2x+1\right)-9=0\)

\(\Leftrightarrow x^2-2x+1-9=0\)

\(\Leftrightarrow\left(x^2-4x\right)+\left(2x-8\right)=0\)

\(\Leftrightarrow x.\left(x-4\right)+2.\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right).\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)

Vậy \(S=\left\{-2,4\right\}\)

+ Ta có: \(x.\left(x-2\right)=-x+12\)

\(\Leftrightarrow x^2-2x+x-12=0\)

\(\Leftrightarrow x^2-x-12=0\)

\(\Leftrightarrow\left(x^2-4x\right)+\left(3x-12\right)=0\)

\(\Leftrightarrow x.\left(x-4\right)+3.\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right).\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(TM\right)\\x=-3\left(TM\right)\end{matrix}\right.\)

Vậy \(S=\left\{-3,4\right\}\)

29 tháng 4 2020

Bài làm

\(36^2+\frac{1}{x^2}+21x+\frac{7}{2x}-18=0\)

\(\Leftrightarrow\frac{36^2.2.x^2}{2x^2}+\frac{2}{2x^2}+\frac{2.x^2.21x}{2x^2}+\frac{7x}{2x^2}-\frac{2.x^2.18}{2x^2}=0\)

\(\Rightarrow2592x^2+2+42x^3+7x-36x^2=0\)

\(\Leftrightarrow2556x^2+42x^3+7x+2=0\)

tự giải nốt. 

30 tháng 4 2020

Không có cách khác à bạn? Mình làm cách đấy rồi mà thấy nó dài vl luôn nên đăng nên hỏi coi có cách khác không

30 tháng 4 2020

pt trên \(< =>1296+\frac{2}{2x^2}+\frac{7x}{2x^2}+21x-18=0\)

\(< =>1278+\frac{7x+2}{2x}+21x=0\)

\(< =>1278+\frac{9}{2}=-21x\)

\(< =>\frac{2565}{2}=-21x\)

\(< =>x=\frac{2565}{-42}=-\frac{855}{14}\)

Ko chắc lắm :P

29 tháng 6 2019

a) ĐKXĐ: \(3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)
Phương trình đã cho tương đương với: \(\hept{\begin{cases}-4x^2+21x-22\ge0\\3x-2=16x^4-168x^3+617x^2-924x+484\end{cases}}\)
Giải nhanh bđt ta được: \(\hept{\begin{cases}\frac{21-\sqrt{89}}{8}\le x\le\frac{21+\sqrt{89}}{8}\\16x^4-168x^3+617x^2-927x+486=0\end{cases}}\)
Giải phương trình \(16x^4-168x^3+617x^2-927x+486=0\)
\(\Leftrightarrow\left(4x^2-23x+27\right)\left(4x^2-19x+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{97}}{8}\\x=\frac{23-\sqrt{97}}{8}\end{cases}}hay\orbr{\begin{cases}x=\frac{19+\sqrt{73}}{8}\\x=\frac{19-\sqrt{73}}{8}\end{cases}}\)

So với điều kiện, ta kết luận phương trình có tập nghiệm \(S=\left\{\frac{23-\sqrt{97}}{8};\frac{19+\sqrt{73}}{8}\right\}\)

Tặng bạn câu này, chúc bạn học tốt. Câu sau bạn tự làm nha

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

3 tháng 4 2018

a) \(|2x+1|=|x-3|\)

\(\Leftrightarrow|2x+1|-|x-3|=0\)

Lập bảng xét dấu :

x \(\frac{-1}{2}\) 3 
2x+1-0+\(|\)+
x-3-\(|\)-0+

Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)

                                    \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow-2x-1-3+x=0\)

\(\Leftrightarrow-x=4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

Nếu  \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)

                                               \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x+1-3+x=0\)

\(\Leftrightarrow3x-2=0\)

\(x=\frac{2}{3}\left(tm\right)\)

Nếu  \(x>3\) thì \(|2x+1|=2x+1\) 

                               \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)

\(\Leftrightarrow2x+1-x+3=0\)

\(\Leftrightarrow x=-4\) ( loại )

3 tháng 4 2018

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)

Mà \(\left(x^2+1\right)^2\ge0\forall x\)

      \(\left(x-3\right)^2\ge0\forall x\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)

Lại có \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2=-1\) ( vô lí )

Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)

31 tháng 12 2018

\(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=0\)

\(\Leftrightarrow\frac{x-258}{17}+\frac{x-258}{19}+\frac{x-258}{21}+\frac{x-258}{23}=-10\)

\(\Leftrightarrow\left(x-258\right)\left(\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right)=-10\)

\(.....................\)

đến đây thì dễ rồi :)

31 tháng 12 2018

mk không giải được phần sau