Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
Ta thấy x = 0 ko phải là nghiệm của pt => x khác 0
Chia cả 2 vế pt cho x^2 khác 0 ta được :
x^2-3x-6+3/x+1/x^2 = 0
<=> (x^2+1/x^2)-3.(x-1/x)-6 = 0
Đặt x-1/x = a => x^2+1/x^2 = a^2+2
pt trở thành :
a^2+2-3a-6 = 0
<=> a^2-3a-4 = 0
<=> (a^2+a)-(4a+4) = 0
<=> (a+1).(a-4) = 0
<=> a=-1 hoặc a=4
<=> x-1/x = -1 hoặc x-1/x = 4
Đến đó nhân cả 2 vế với x mà tìm x nha
Tk mk nha
x = 0 không là nghiệm của pt.
\(x\ne0\)
\(PT\Leftrightarrow x^2+\frac{1}{x^2}-3x+\frac{3}{x}+6=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2-3\left(x-\frac{1}{x}\right)+8=0\)<=> PT vô nghiệm
a/ (x2 - 4) + (x + 2)(3 - 2x) = 0
=> (x - 2)(x + 2) + (x + 2)(3 - 2x) = 0
=> (x + 2)(x - 2 + 3 - 2x) = 0
=> (x + 2)(1 - x) = 0
=> x + 2 = 0 => x = -2
hoặc 1 - x = 0 => x = 1
b/ 2x3 + 6x2 = x2 + 3x
=> 2x3 + 5x2 - 3x = 0
=> x.(2x2 + 5x - 3) = 0
=> x = 0
hoặc 2x2 + 5x - 3 = 0 => (2x - 1)(x + 3) = 0
=> 2x - 1 = 0 => x = 1/2
hoặc x + 3 = 0 => x = -3
Vậy x = 0 , x = 1/2 , x = -3
c/ (2x - 5)2 = (x + 2)2
=> (2x - 5)2 - (x + 2)2 = 0
=> (2x - 5 + x + 2).(2x - 5 - x - 2) = 0
=> (3x - 3).(x - 7) = 0
=> 3x - 3 = 0 => 3x = 3 => x = 1
hoặc x - 7 = 0 => x = 7
Vậy x = 1 , x = 7
(3x + 1)2 - (3x - 1).(3x + 1) = 1
<=> (3x + 1).[(3x + 1) - (3x - 1)] = 1
<=> (3x + 1).(3x + 1 - 3x + 1) = 1
<=> (3x + 1).2 = 1
<=> 3x + 1 = 1/2
<=> 3x = -1/2
<=> x = -1/6
Vậy S = {-1/6}.
36x2 - 25 - x.(6x - 5) = 0
<=> (36x2 - 25) - x.(6x - 5) = 0
<=> [(6x)2 - 52] - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5) - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5 - x) = 0
<=> (6x - 5).(5x + 5) = 0
<=> 5.(6x - 5).(x + 1) = 0
<=> 6x - 5 = 0 hoặc x + 1 = 0
<=> x = 5/6 hoặc x = -1
Vậy S = {-1; 5/6}.
a)
\(\left(3x+1\right)^2-\left(3x-1\right)\left(3x+1\right)=1\)
\(\Rightarrow\left(9x^2+6x+1\right)-\left(9x^2-1\right)=1\)
\(\Rightarrow6x+2=1\)
\(\Rightarrow x=-\frac{1}{6}\)
Vậy pt có nghiệm là x = - 1 / 6
b)
\(36x^2-25-x\left(6x-5\right)=0\)
\(\Rightarrow\left(36x^2-25\right)-x\left(6x-5\right)=0\)
\(\Rightarrow\left(6x-5\right)\left(6x+5\right)-x\left(6x-5\right)=0\)
\(\Rightarrow\left(6x-5\right)\left(6x+5-x\right)=0\)
\(\Rightarrow\left(6x-5\right)\left(5x+5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{6}\\x=-1\end{array}\right.\)
Vậy pt có nghiệm là x = 5 / 6 ; x = - 1
(3x + 1)2 - (3x - 1).(3x + 1) = 1
<=> (3x + 1).[(3x + 1) - (3x - 1)] = 1
<=> (3x + 1).(3x + 1 - 3x + 1) = 1
<=> (3x + 1).2 = 1
<=> 3x + 1 = 1/2
<=> 3x = -1/2
<=> x = -1/6
Vậy S = {-1/6}.
36x2 - 25 - x.(6x - 5) = 0
<=> (36x2 - 25) - x.(6x - 5) = 0
<=> [(6x)2 - 52] - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5) - x.(6x - 5) = 0
<=> (6x - 5).(6x + 5 - x) = 0
<=> (6x - 5).(5x + 5) = 0
<=> 5.(6x - 5).(x + 1) = 0
<=> 6x - 5 = 0 hoặc x + 1 = 0
<=> x = 5/6 hoặc x = -1
Vậy S = {-1; 5/6}.
\(2x^3+3x^2+6x+5=0\)
\(\Leftrightarrow\)\(\left(2x^3+2x^2\right)+\left(x^2+x\right)+\left(5x+5\right)=0\)
\(\Leftrightarrow\)\(2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(2x^2+x+5\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
\(x=-1\)
\(x^4-3x^3-6x+4=0\)
<=>\(\left(x^4+x^3+2x^2\right)-\left(4x^3+4x^2+8x\right)+\left(2x^2+2x+4\right)=0\)
<=>\(x^2\left(x^2+x+2\right)-4x\left(x^2+x+2\right)+2\left(x^2+x+2\right)=0\)
<=>\(\left(x^2+x+2\right)\left(x^2-4x+2\right)=0\)<=>\(\orbr{\begin{cases}x^2+x+2=0\\x^2-4x+2=0\end{cases}}\)
+)\(x^2+x+2=0\)
\(x^2+x+2=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{4}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
=> ko có x thỏa mãn x2+x+2=0
+)\(x^2-4x+2=0\)
\(x^2-4x+2=x^2-4x+4-2=\left(x-2\right)^2-2=0\)
<=>\(\left(x-2\right)^2=2\)<=>\(\orbr{\begin{cases}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{2}+2\\x=2-\sqrt{2}\end{cases}}\)
Vậy tập nghiệm pt \(S=\left\{2-\sqrt{2};\sqrt{2}+2\right\}\)
bạn tự kết luận nhé !
a, \(4x-3=2\left(x-3\right)\Leftrightarrow4x-3=2x-6\)
\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
b, \(5x^2+x=0\Leftrightarrow x\left(5x+1\right)=0\Leftrightarrow x=-\frac{1}{5};x=0\)
c, \(\left(3x-5\right)\left(x+7\right)=0\Leftrightarrow x=-7;x=\frac{5}{3}\)
d, \(\frac{2}{x-3}-\frac{3}{x+3}=\frac{7x-1}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{2\left(x+3\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x-1}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x+6-3x+9=7x-1\Leftrightarrow-x+15=7x-1\)
\(\Leftrightarrow-8x=-16\Leftrightarrow x=2\)( tmđk )
e, \(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.24=7920\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-4\right)\left(12x-2\right)\left(12x-3\right)=7920\)
\(\Leftrightarrow\left(144x^2-60x+4\right)\left(144x^2-60x+6\right)=7920\)
Đặt \(144x^2-60x+4=t\)
\(t\left(t+2\right)=7920\Leftrightarrow t^2+2t-7920=0\)
\(\Leftrightarrow\left(t-88\right)\left(t+90\right)=0\Leftrightarrow t=88;t=-90\)
suy ra :TH1 : \(144x^2-60x+4=88\Leftrightarrow12\left(12x+7\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{7}{12};x=1\)
TH2 : \(144x^2-60x+4=-90\Leftrightarrow144x^2-60x+94=0\)
\(\Leftrightarrow x=\frac{5\pm3\sqrt{39}i}{24}\)
Bài này k có nghiệm nka bạn