\(x^2+2x+2|x+1|-2=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

\(x^2+2x+2\left|x+1\right|-2=0\)

\(\Leftrightarrow x^2+2x+1+2\left|x+1\right|-3=0\)

\(\Leftrightarrow\left(x+1\right)^2+2\left|x+1\right|=3\)

Xét các t/h là ra thôi bạn

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

22 tháng 4 2017

Giải bài 24 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

Giải bài 24 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

26 tháng 1 2021

a)(x2-2x+1)-4=0

⇔(x-1)2-4=0

⇔(x-1-2)(x-1+2)=0

⇔(x-3)(x+1)=0

⇔x-3=0 hoặc x+1=0

1.x-3=0⇔x=3

2.x+1=0⇔x=-1

vậy phương trình có 2 nghiệm:x=3 và x=-1

 

 

3 tháng 4 2018

a) \(|2x+1|=|x-3|\)

\(\Leftrightarrow|2x+1|-|x-3|=0\)

Lập bảng xét dấu :

x \(\frac{-1}{2}\) 3 
2x+1-0+\(|\)+
x-3-\(|\)-0+

Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)

                                    \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow-2x-1-3+x=0\)

\(\Leftrightarrow-x=4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

Nếu  \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)

                                               \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x+1-3+x=0\)

\(\Leftrightarrow3x-2=0\)

\(x=\frac{2}{3}\left(tm\right)\)

Nếu  \(x>3\) thì \(|2x+1|=2x+1\) 

                               \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)

\(\Leftrightarrow2x+1-x+3=0\)

\(\Leftrightarrow x=-4\) ( loại )

3 tháng 4 2018

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)

Mà \(\left(x^2+1\right)^2\ge0\forall x\)

      \(\left(x-3\right)^2\ge0\forall x\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)

Lại có \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2=-1\) ( vô lí )

Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)

4 tháng 3 2020

(x2 + x  + 1)(6 - 2x) = 0

<=> 6 - 2x = 0 (do x2 + x + 1 > 0)

<=> 2x = 6

<=> x = 3

Vậy S = {3}

(8x - 4)(x2 + 2x + 2) = 0

<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)

<=> 8x = 4

<=> x = 1/2 

Vậy S  = {1/2}

x3 - 7x + 6 = 0

<=> x3 - x - 6x + 6 = 0

<=> x(x2 - 1) - 6(x - 1) = 0

<=> x(x - 1)(x + 1) - 6(x - 1) = 0

<=> (x2 + x - 6)(x - 1) = 0

<=> (x2 + 3x - 2x - 6)(x - 1) = 0

<=> (x + 3)(x - 2)(x - 1) = 0

<=> x + 3 = 0

hoặc x - 2 = 0

hoặc x  - 1 = 0

<=> x = -3

hoặc x = 2

hoặc x = 1

Vậy S = {-3; 1; 2}

x5 - 5x3 + 4x = 0

<=> x(x4 - 5x2 + 4) = 0

<=> x(x4 - x2 - 4x2 + 4) = 0

<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0

<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0

<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x  + 1 = 0

<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1

Vậy S = {-2; -1; 0; 1; 2}

4 tháng 3 2020

+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

 - Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

  \(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)

Vậy \(S=\left\{3\right\}\)

+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

 - Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)

 - Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

   \(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

+ Ta có: \(x^3-7x+6=0\)

       \(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)

       \(\Leftrightarrow x^2.\left(x-1\right)+x.\left(x-1\right)-6.\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\) 

       \(\Leftrightarrow\left(x-1\right).\left[x.\left(x-2\right)+3.\left(x-2\right)\right]=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)

       \(\Leftrightarrow x=1\left(TM\right)\)hoặc \(x=2\left(TM\right)\)hoặc \(x=-3\left(TM\right)\)

 Vậy \(S=\left\{-3;1;2\right\}\)

 + Ta có: \(x^5-5x^3+4x=0\)

        \(\Leftrightarrow x.\left(x^4-5x^2+4\right)=0\)

       \(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)

       \(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)

       \(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)

       \(\Leftrightarrow x=0\left(TM\right)\)

hoặc  \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)

hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)

Vậy \(S=\left\{-2;-1;0;1;2\right\}\)

!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!      

31 tháng 12 2019

a) Ta có: x4 - x3 + 2x2 - x + 1 = 0

=> (x4 + 2x2 + 1) - x(x2 + 1) = 0

=> (x2 + 1)2 - x(x2 + 1) = 0

=> (x2 + 1)(x2 - x + 1) = 0

=> (x2 + 1)[(x2 - x + 1/4) + 3/4] = 0

=> (x2+  1 )[(x - 1/2)2 + 3/4] = 0

=> pt vô nghiệm (vì x2 + 1 > 0; (x - 1/2)2 + 3/4 > 0)

b) Ta có: x3 + 2x2 - 7x + 4 = 0

=> (x3 - x) + (2x2 - 6x + 4) = 0

=> x(x2 - 1) + 2(x2 - 3x + 2) = 0

=> x(x - 1)(x + 1) + 2(x2 - 2x - x + 2) = 0

=> x(x - 1)(x + 1) + 2(x - 2)(x - 1) = 0

=> (x - 1)(x2 + x + 2x - 4) = 0

=> (x - 1)(x2 + 3x - 4) = 0

=> (x - 1)(x2  + 4x - x - 4) = 0

=> (x - 1)(x + 4)(x - 1) = 0

=> (x - 1)2(x + 4) = 0

=> \(\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)

1 tháng 1 2020

a) \(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-x\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-x\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1-x\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\right]=0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=0\)

Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}}\)

\(\Rightarrow\)Phương trình vô nghiệm

Vậy không có giá trị x thỏa mãn đề bài
 

b) \(x^3+2x^2-7x+4=0\)

\(\Leftrightarrow\left(x^3-x\right)+\left(2x^2-6x+4\right)=0\)

\(\Leftrightarrow x\left(x^2-1\right)+2\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left(x^2-x-2x+2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left[x\left(x-1\right)-2\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)+2\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2+x+2x-4\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2+3x-4\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2+4x-x-4\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+4\right)-\left(x+4\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-4\end{cases}}}\)

Vậy x=1; x=-4

5 tháng 3 2020

\(x^2+2x-2=0\)

Ta có \(\Delta=2^2+4.2=12\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-2+\sqrt{12}}{2}=\sqrt{3}-1\\x=-\sqrt{3}-1\end{cases}}\)

5 tháng 3 2020

Lớp 8 k học đt thì chưa hiểu đen ta đâu, đợi mình xíu

12 tháng 6 2017

a)\(x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

b)\(2x^2+x-1=0\)

\(\Leftrightarrow2x^2-x+2x-1=0\)

\(\Leftrightarrow x\left(2x-1\right)+2x-1=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}\)

12 tháng 6 2017

a) \(x^2-x-6=0\)

\(\Rightarrow x^2-3x+2x-6=0\)

\(\Rightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\)x - 3 = 0 hoặc x +2 = 0

\(\Rightarrow x\)=3 hoặc x = -2

10 tháng 2 2020

Có bạn nào giúp mình với

mk ko bt làm 

-------------------

10 tháng 2 2020

\(\left(x-1\right)^2+2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x-1+x+2\right)^2=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow x=\frac{-1}{2}\)

\(x^2+2x+1=4\left(x^2-2x+1\right)\)

\(\Leftrightarrow x^2+2x+1=4x^2-8x+4\)

\(\Leftrightarrow3x^2-10x+3=0\)

Ta có \(\Delta=10^2-4.3.3=64,\sqrt{\Delta}=8\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{10+8}{6}=2\\x=\frac{10-8}{6}=\frac{1}{3}\end{cases}}\)