Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+5x^2-10x+2x-4=0\)
\(\Leftrightarrow x^3\left(x-2\right)+4x^2\left(x-2\right)+5x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+x^2+3x^2+3x+2x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+2x+x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{2;-1;-2\right\}\)
Vậy....
c, \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2\left(x^3+1\right)+7x\left(x+1\right)=0\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[2\left(x^2-x+1\right)+7x\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)
Tập nghiệm của pt: \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)
b, \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\) (1)
Đặt: \(x^2-7=t\left(t\ge-7\right)\)
Khi đó (1) trở thành: \(\left(t+3\right)\left(t-3\right)=72\Leftrightarrow t^2-9=72\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\left(loai\right)\end{cases}}\)
\(t=9\Rightarrow x^2-7=9\Leftrightarrow x=\pm4\)
Tập nghiệm của pt là \(S=\left\{\pm4\right\}\)
a, \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^3\left(x+1\right)+x^2\left(x+1\right)-4x\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm2\end{cases}}\)
a)hình như đề sai
b)\(x^3+2x^2-7x+4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(3x^2-3x\right)-\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+3x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+3x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x+4x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[\left(x^2-x\right)+\left(4x-4\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+4=0\\x-1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\x=1\\x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Vậy x=-4 hay x=1
a) x4 - x3 + 2x2 - x + 1 = 0
=> (x4 + 2x2 + 1) - (x3 + x) = 0
=> (x2 + 1)2 - x(x2 + 1) = 0
=> (x2 + 1)(x2 - x + 1) = 0
=> \(\left[{}\begin{matrix}x^2+1=0\left(loại\right)\\x^2-x+1=0\end{matrix}\right.\)
=> (x2 - x + 1/4) + 3/4 = 0
=> (x - 1/2)2 + 3/4 = 0 (loại)
=> pt vô nghiệm
b) Ta có x3 + 2x2 - 7x + 4 = 0
=> (x3 - x) + (2x2 - 6x + 4) = 0
=> x(x2 - 1) + 2(x2 - 3x + 2) = 0
=> x(x - 1)(x + 1) + 2(x2 - 2x - x + 2) = 0
=> (x - 1)(x2 + x) + 2(x - 1)(x - 2) = 0
=> (x - 1)(x2 + x + 2x - 4) = 0
=> (x - 1)(x2 + 3x - 4) = 0
=> (x - 1)(x2 + 4x - x - 4) = 0
=> (x - 1)2(x + 4) = 0
=> \(\left[{}\begin{matrix}x-1=0\\x+4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy ...
a)\(2+\frac{3}{x-5}=1\)
\(\Rightarrow\frac{3}{x-5}=-1\)
\(\Rightarrow3=-x+5\)
\(\Leftrightarrow x+3=5\)
\(\Rightarrow x=2\)
a) Khai triển bình phương ròii giải như bình thường
b) <=>(x+2)(x2-2x+1)=0
sau đó tiếp tục giải phương trình tích là ra
c) <=>x (2x2-5x-7)=0
<=> x=0
hoặc 2x2-5x-7=0
bn đọc tự giải^^
#hoctốt
#plsss...k☺
\(\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1}{\left(x-3\right)\left(2x-1\right)}=\frac{2x+5}{\left(x-3\right)\left(2x-1\right)}\)
\(\frac{\left(x-3\right)\left(x+4\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=\frac{\left(2x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}\)
\(\Rightarrow x^2+x-12+x^2-x-2=2x^2+x-10\Leftrightarrow x=-4\)
\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{2x-5}{2x^2-7x+3}-\frac{x+1}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{x+4}{2x^2-7x+3}\)
TH1:\(x+4\ne0\)
\(\Rightarrow2x^2-5x+2=2x^2-7x+3\)
\(\Rightarrow-5x+2=-7x+3\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
TH2:\(x+4=0\)
\(\Rightarrow x=-4\)
(x2 + x + 1)(6 - 2x) = 0
<=> 6 - 2x = 0 (do x2 + x + 1 > 0)
<=> 2x = 6
<=> x = 3
Vậy S = {3}
(8x - 4)(x2 + 2x + 2) = 0
<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)
<=> 8x = 4
<=> x = 1/2
Vậy S = {1/2}
x3 - 7x + 6 = 0
<=> x3 - x - 6x + 6 = 0
<=> x(x2 - 1) - 6(x - 1) = 0
<=> x(x - 1)(x + 1) - 6(x - 1) = 0
<=> (x2 + x - 6)(x - 1) = 0
<=> (x2 + 3x - 2x - 6)(x - 1) = 0
<=> (x + 3)(x - 2)(x - 1) = 0
<=> x + 3 = 0
hoặc x - 2 = 0
hoặc x - 1 = 0
<=> x = -3
hoặc x = 2
hoặc x = 1
Vậy S = {-3; 1; 2}
x5 - 5x3 + 4x = 0
<=> x(x4 - 5x2 + 4) = 0
<=> x(x4 - x2 - 4x2 + 4) = 0
<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0
<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0
<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1
Vậy S = {-2; -1; 0; 1; 2}
+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
- Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)
\(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)
Vậy \(S=\left\{3\right\}\)
+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
- Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)
- Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)
\(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
+ Ta có: \(x^3-7x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)
Vậy \(S=\left\{-3;1;2\right\}\)
+ Ta có: \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)
\(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)
\(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)
\(\Leftrightarrow x=0\left(TM\right)\)
hoặc \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)
hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)
Vậy \(S=\left\{-2;-1;0;1;2\right\}\)
!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!
\(a,x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow x^4+x^3+x^3+x^2-4x^2-4x-4x-4=0\\ \Leftrightarrow x^3\left(x+1\right)+x^2\left(x+1\right)-4x\left(x+1\right)-4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left[x^2\left(x+1\right)-4\left(x+1\right)\right]=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x-2\right)\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=2\end{matrix}\right.\\ Vậy.....\)
\(b,\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\\ \Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\\ \Leftrightarrow\left(x^2-7+3\right)\left(x^2-7-3\right)=72\\ \Leftrightarrow\left(x^2-7\right)^2-9=72\\ \Leftrightarrow\left(x^2-7\right)^2=81\\ \Rightarrow\left[{}\begin{matrix}x^2-7=9\\x^2-7=-9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=\sqrt{-2}\left(vôlí\right)\end{matrix}\right.\\ Vậyx=\sqrt{2}\)
\(c,2x^3+7x^2+7x+2=0\\ \Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\\ \Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\2x^2+5x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=?\left(tựtính\right)\end{matrix}\right.\)
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
a) Ta có: x4 - x3 + 2x2 - x + 1 = 0
=> (x4 + 2x2 + 1) - x(x2 + 1) = 0
=> (x2 + 1)2 - x(x2 + 1) = 0
=> (x2 + 1)(x2 - x + 1) = 0
=> (x2 + 1)[(x2 - x + 1/4) + 3/4] = 0
=> (x2+ 1 )[(x - 1/2)2 + 3/4] = 0
=> pt vô nghiệm (vì x2 + 1 > 0; (x - 1/2)2 + 3/4 > 0)
b) Ta có: x3 + 2x2 - 7x + 4 = 0
=> (x3 - x) + (2x2 - 6x + 4) = 0
=> x(x2 - 1) + 2(x2 - 3x + 2) = 0
=> x(x - 1)(x + 1) + 2(x2 - 2x - x + 2) = 0
=> x(x - 1)(x + 1) + 2(x - 2)(x - 1) = 0
=> (x - 1)(x2 + x + 2x - 4) = 0
=> (x - 1)(x2 + 3x - 4) = 0
=> (x - 1)(x2 + 4x - x - 4) = 0
=> (x - 1)(x + 4)(x - 1) = 0
=> (x - 1)2(x + 4) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
a) \(x^4-x^3+2x^2-x+1=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1-x\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\right]=0\)
\(\Leftrightarrow\left(x^2+1\right)\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=0\)
Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}}\)
\(\Rightarrow\)Phương trình vô nghiệm
Vậy không có giá trị x thỏa mãn đề bài
b) \(x^3+2x^2-7x+4=0\)
\(\Leftrightarrow\left(x^3-x\right)+\left(2x^2-6x+4\right)=0\)
\(\Leftrightarrow x\left(x^2-1\right)+2\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left(x^2-x-2x+2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left[x\left(x-1\right)-2\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)+2\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+x+2x-4\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+3x-4\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2+4x-x-4\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+4\right)-\left(x+4\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-4\end{cases}}}\)
Vậy x=1; x=-4