\(x^2-x+4=2\sqrt{x^2+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

nx \(x^2-x+4=2\sqrt{x^2+3}\le\frac{2^2+x^2+3}{2}=\frac{x^2+7}{2}\) (am gm)

\(\Rightarrow x^2-x+4\le\frac{x^2+7}{2}\Leftrightarrow2x^2-2x+8\le x^2+7\Leftrightarrow x^2-2x+1\le0\)

                                                         \(\Leftrightarrow\left(x-1\right)^2\le0\) ma \(\left(x-1\right)^2\ge0\) 

                      \(\Rightarrow x=1\)

8 tháng 10 2017

\(Pt\Leftrightarrow\left(\sqrt{x^2+3}-1+\sqrt{x}\right)\left(\sqrt{x^2+3}-1-\sqrt{x}\right)=0\)

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

4 tháng 3 2018

hello bạn

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

1 tháng 7 2020

\(\sqrt{x-3+2\sqrt{x-4}}=2\sqrt{x-4}-1\left(đkxđ:x\ge4\right)\)

Đặt \(x-3\)là \(u\)thì phương trình đã cho tương đương :

\(\sqrt{u+2\sqrt{u-1}}=2\sqrt{u-1}-1\)\(\left(u\ge1\right)\)

\(< =>u+2\sqrt{u-1}=2\left(u-1\right)-4\sqrt{u-1}+1\)

\(< =>u-1+6\sqrt{u-1}-2\left(u-1\right)=0\)

\(< =>6\sqrt{u-1}-\left(u-1\right)=0\)

Đặt \(\sqrt{u-1}\)là \(v\)thì phương trình tương đương :

\(6v-v^2=0\left(v\ge0\right)\)

\(< =>\orbr{\begin{cases}v=0\\v=6\end{cases}}\)

Với \(v=0< =>\sqrt{u-1}=0\)

\(< =>u=1< =>x-3=0< =>x=3\left(tm\right)\)

Với \(v=6< =>\sqrt{u-1}=6\)

\(< =>u=37< =>x-3=37< =>x=40\left(tm\right)\)

Vậy tập nghiệm của phương trình trên là {3;40} 

1 tháng 7 2020

sửa lại cho mình là 3 ( ktm ) 

Cái kết luận sửa lại là 40 thôi nhé

20 tháng 5 2017

Sorry nha , em ko bt làm đâu , em mới học lớp 5 thui

20 tháng 5 2017

sory nha ae cũng ko biết làm đâu... em mới lên lớp 6 thôi