K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 1 2020

Hoc24 có bộ gõ công thức toán tích hợp sẵn, bạn lưu ý gõ đề đúng công thức để tránh gây "phản cảm" cho người đọc.

Lời giải:

ĐKXĐ: $x=0$ hoặc $x\geq 1$

Hiển nhiên $x=0$ là 1 nghiệm của PT

Nếu $x\neq 0\Rightarrow x\geq 1$. Khi đó:

PT $\Leftrightarrow 2x^2-2\sqrt{x(x^2-x)}-2\sqrt{x(x-1)}=0$

$\Leftrightarrow x^2-2x+1+[(x^2-x)+x-2\sqrt{x(x^2-x)}]+[x+(x-1)-2\sqrt{x(x-1)}]=0$

$\Leftrightarrow (x-1)^2+(\sqrt{x^2-x}-\sqrt{x})^2+(\sqrt{x}-\sqrt{x-1})^2=0$

$\Rightarrow (x-1)^2=(\sqrt{x^2-x}-\sqrt{x})^2=(\sqrt{x}-\sqrt{x-1})^2=0$ (vô lý- loại)

Vậy $x=0$ là nghiệm duy nhất.

2 tháng 7 2017

a)  3 x 2 − 7 x − 10 ⋅ 2 x 2 + ( 1 − 5 ) x + 5 − 3 = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1):

3 x 2   –   7 x   –   10   =   0

Có a = 3; b = -7; c = -10

⇒ a – b + c = 0

⇒ (1) có hai nghiệm  x 1   =   - 1   v à   x 2   =   - c / a   =   10 / 3 .

+ Giải (2):

2 x 2   +   ( 1   -   √ 5 ) x   +   √ 5   -   3   =   0

Có a = 2; b = 1 - √5; c = √5 - 3

⇒ a + b + c = 0

⇒ (2) có hai nghiệm:

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 3 + 3 x 2 - 2 x - 6 = 0 ⇔ x 3 + 3 x 2 - ( 2 x + 6 ) = 0 ⇔ x 2 ( x + 3 ) - 2 ( x + 3 ) = 0 ⇔ x 2 - 2 ( x + 3 ) = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): x 2   –   2   =   0   ⇔   x 2   =   2  ⇔ x = √2 hoặc x = -√2.

+ Giải (2): x + 3 = 0 ⇔ x = -3.

Vậy phương trình có tập nghiệm S = {-3; -√2; √2}

c)

x 2 − 1 ( 0 , 6 x + 1 ) = 0 , 6 x 2 + x ⇔ x 2 − 1 ( 0 , 6 x + 1 ) = x ⋅ ( 0 , 6 x + 1 ) ⇔ x 2 − 1 ( 0 , 6 x + 1 ) − x ( 0 , 6 x + 1 ) = 0 ⇔ ( 0 , 6 x + 1 ) x 2 − 1 − x = 0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 0,6x + 1 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

x 2   –   x   –   1   =   0

Có a = 1; b = -1; c = -1

⇒   Δ   =   ( - 1 ) 2   –   4 . 1 . ( - 1 )   =   5   >   0

⇒ (2) có hai nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

d)

x 2 + 2 x − 5 2 = x 2 − x + 5 2 ⇔ x 2 + 2 x − 5 2 − x 2 − x + 5 2 = 0 ⇔ x 2 + 2 x − 5 − x 2 − x + 5 ⋅ x 2 + 2 x − 5 + x 2 − x + 5 = 0 ⇔ ( 3 x − 10 ) 2 x 2 + x = 0

⇔ (3x-10).x.(2x+1)=0

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (1): 3x – 10 = 0 ⇔ Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2):

Giải bài 39 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

24 tháng 4 2017

Ta có:  x 3  – 5 x 2 –x +5 = 0 ⇔  x 2 ( x -5) – ( x -5) =0

⇔ (x -5)(x2 -1) =0 ⇔ (x -5)(x -1)(x +1) =0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy phương trình đã cho có 3 nghiệm :x1 = 5;x2 =1;x3=-1

17 tháng 7 2017

Đáp án C

x − 2 − x 3 + x 2 = x − 4 3 − 1 ⇔ 2 x − 2 − x 6 + 3 x 6 = 2 x − 4 6 − 6 6 ⇔ − 4 x − 2 x 2 + 3 x = 2 x − 8 − 6 ⇔ − 2 x 2 − 3 x + 14 = 0 t a   c ó   Δ = − 3 2 − 4. − 2 .14 = 121 ⇒ Δ = 11 ⇒ x 1 = 3 − 11 2. − 2 = 2 ;   ⇒ x 2 = 3 + 11 2. − 2 = − 7 2

4 tháng 11 2018

Đáp án B

Ta có :  2 x 3   +   2 x 2   -   3 x   +   10   =   2 x 3   +   x 2   –   10

⇔   2 x 3   +   2 x 2   -   3 x   +   10   -   2 x 3   -   x 2   +   10 =   0

⇔   x 2   –   3 x   +   20   =   0

Phương trình trên là phương trình bậc hai một ẩn với a = 1; b = -3 và c = 20.

28 tháng 9 2019

Ta có: 3 x 3  +6 x 2 -4x =0  ⇔ x(3 x 2  +6x -4) =0

⇔ x = 0 hoặc 3 x 2  +6x -4 =0

Giải phương trình 3 x 2 +6x -4 =0

∆ ’ =  3 2  - 3(-4) = 9 + 12 = 21 > 0

∆ ' = 21

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy phương trình đã cho có 3 nghiệm

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

25 tháng 6 2017

25 tháng 8 2018

Ta có:  x - 1 3  + 2x =  x 3 –  x 2 – 2x +1

⇔ x 3  – 3 x 2 + 3x  - 1 + 2x = x 3  –  x 2  - 2x + 1

⇔ 2 x 2  – 7x +2 =0

∆  = - 7 2  -4.2.2 = 49 - 16 = 33 > 0

∆ = 33

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9