Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3 x 2 − 7 x − 10 ⋅ 2 x 2 + ( 1 − 5 ) x + 5 − 3 = 0
+ Giải (1):
3 x 2 – 7 x – 10 = 0
Có a = 3; b = -7; c = -10
⇒ a – b + c = 0
⇒ (1) có hai nghiệm x 1 = - 1 v à x 2 = - c / a = 10 / 3 .
+ Giải (2):
2 x 2 + ( 1 - √ 5 ) x + √ 5 - 3 = 0
Có a = 2; b = 1 - √5; c = √5 - 3
⇒ a + b + c = 0
⇒ (2) có hai nghiệm:
Vậy phương trình có tập nghiệm
b)
x 3 + 3 x 2 - 2 x - 6 = 0 ⇔ x 3 + 3 x 2 - ( 2 x + 6 ) = 0 ⇔ x 2 ( x + 3 ) - 2 ( x + 3 ) = 0 ⇔ x 2 - 2 ( x + 3 ) = 0
+ Giải (1): x 2 – 2 = 0 ⇔ x 2 = 2 ⇔ x = √2 hoặc x = -√2.
+ Giải (2): x + 3 = 0 ⇔ x = -3.
Vậy phương trình có tập nghiệm S = {-3; -√2; √2}
c)
x 2 − 1 ( 0 , 6 x + 1 ) = 0 , 6 x 2 + x ⇔ x 2 − 1 ( 0 , 6 x + 1 ) = x ⋅ ( 0 , 6 x + 1 ) ⇔ x 2 − 1 ( 0 , 6 x + 1 ) − x ( 0 , 6 x + 1 ) = 0 ⇔ ( 0 , 6 x + 1 ) x 2 − 1 − x = 0
+ Giải (1): 0,6x + 1 = 0 ⇔
+ Giải (2):
x 2 – x – 1 = 0
Có a = 1; b = -1; c = -1
⇒ Δ = ( - 1 ) 2 – 4 . 1 . ( - 1 ) = 5 > 0
⇒ (2) có hai nghiệm
Vậy phương trình có tập nghiệm
d)
x 2 + 2 x − 5 2 = x 2 − x + 5 2 ⇔ x 2 + 2 x − 5 2 − x 2 − x + 5 2 = 0 ⇔ x 2 + 2 x − 5 − x 2 − x + 5 ⋅ x 2 + 2 x − 5 + x 2 − x + 5 = 0 ⇔ ( 3 x − 10 ) 2 x 2 + x = 0
⇔ (3x-10).x.(2x+1)=0
+ Giải (1): 3x – 10 = 0 ⇔
+ Giải (2):
ĐK: \(x\le3\)
Đặt \(a=\sqrt{3-x}\left(a\ge0\right)\) \(\Leftrightarrow3-a^2=x\)
Pttt: \(x^3+\left(3-a^2\right)\left(1+a\right)=4a\)
\(\Leftrightarrow x^3-a^3-a^2-a+3=0\)
\(\Leftrightarrow x^3-a^3+\left(3-a^2\right)-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2\right)+\left(x-a\right)=0\)
\(\Leftrightarrow x-a=0\) \(\Leftrightarrow x=a\) \(\Leftrightarrow x=\sqrt{3-x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=3-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1+\sqrt{13}}{2}\)(thỏa)
Vậy...
a: Khi m=1 thì (1) sẽ là:
x^2-x-8=0
=>\(x=\dfrac{1\pm\sqrt{33}}{2}\)
b: 3x1^2+3x2^2+2x1x2=5
=>3[(x1+x2)^2-2x1x2]+2x1x2=5
=>3[(2m-1)^2-2(-8m)]+2(-8m)=5
=>3(4m^2-4m+1+16m)-16m=5
=>12m^2+36m+3-16m-5=0
=>12m^2+20m-2=0
=>\(m=\dfrac{-5\pm\sqrt{31}}{6}\)
`a,3x^2+7x+2=0`
`<=>3x^2+6x+x+2=0`
`<=>3x(x+2)+x+2=0`
`<=>(x+2)(3x+1)=0`
`<=>x=-2\or\x=-1/3`
d) Ta có: (x-1)(x+2)=70
\(\Leftrightarrow x^2+2x-x-2-70=0\)
\(\Leftrightarrow x^2+x-72=0\)
\(\Leftrightarrow x^2+9x-8x-72=0\)
\(\Leftrightarrow x\left(x+9\right)-8\left(x+9\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=8\end{matrix}\right.\)
Vậy: S={8;-9}
\(\left(x-1\right)^3+3\left(x-1\right)^2\cdot x+3\left(x-1\right)\cdot x^2+x^3\)
\(=\left(x-1+x\right)^3\)
\(=\left(2x-1\right)^3\)
Phương trình (*) có hai nghiệm phân biệt:
Có: a = 3; b’ = -2√2; c = 2;
Δ ’ = b ’ 2 – a c = ( - 2 √ 2 ) 2 – 3 . 2 = 2 > 0
Vì Δ’ > 0 nên phương trình có hai nghiệm phân biệt là:
Phương trình có a = 3; b’ = -1; c = 1;
Δ ’ = b ’ 2 – a c = ( - 1 ) 2 – 3 . 1 = - 2 < 0
Vậy phương trình vô nghiệm.
d)
0 , 5 x ( x + 1 ) = ( x – 1 ) 2 ⇔ 0 , 5 x 2 + 0 , 5 x = x 2 – 2 x + 1 ⇔ x 2 – 2 x + 1 – 0 , 5 x 2 – 0 , 5 x = 0 ⇔ 0 , 5 x 2 – 2 , 5 x + 1 = 0 ⇔ x 2 – 5 x + 2 = 0
Phương trình có hai nghiệm phân biệt:
a) 2 x 2 − 2 x 2 + 3 x 2 − 2 x + 1 = 0 ( 1 )
Đặt x 2 – 2 x = t ,
(1) trở thành : 2 t 2 + 3 t + 1 = 0 ( 2 ) .
Giải (2) :
Có a = 2 ; b = 3 ; c = 1
⇒ a – b + c = 0
⇒ (2) có nghiệm t 1 = - 1 ; t 2 = - c / a = - 1 / 2 .
+ Với t = -1 ⇒ x 2 − 2 x = − 1 ⇔ x 2 − 2 x + 1 = 0 ⇔ ( x − 1 ) 2 = 0 ⇔ x = 1
(1) trở thành: t 2 – 4 t + 3 = 0 ( 2 )
Giải (2):
Có a = 1; b = -4; c = 3
⇒ a + b + c = 0
⇒ (2) có nghiệm t 1 = 1 ; t 2 = c / a = 3 .
+ t = 1 ⇒ x + 1/x = 1 ⇔ x 2 + 1 = x ⇔ x 2 – x + 1 = 0
Có a = 1; b = -1; c = 1 ⇒ Δ = ( - 1 ) 2 – 4 . 1 . 1 = - 3 < 0
Phương trình vô nghiệm.
x3 + 3x2 – 2x – 6 = 0
⇔ (x3 + 3x2) – (2x + 6) = 0
⇔ x2(x + 3) – 2(x + 3) = 0
⇔ (x2 – 2)(x + 3) = 0
+ Giải (1): x2 – 2 = 0 ⇔ x2 = 2 ⇔ x = √2 hoặc x = -√2.
+ Giải (2): x + 3 = 0 ⇔ x = -3.
Vậy phương trình có tập nghiệm S = {-3; -√2; √2}
x bang 5
bang 5