Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^3+x^2-2x=0\\ \Leftrightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2-1\right)\cdot\left(x^2+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\)
=> Phương trình đã cho là phương trình vô nghiệm
thôi cho sửa lại ...
\(x^4+2x^3+x^2-2x=0\\ \Rightarrow x^2\cdot\left(x^2-1\right)+2x\cdot\left(x^2-1\right)=0\\ \Rightarrow\left(x^2+2x\right)\cdot\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\phương.trình.vô.nghiệm\end{matrix}\right.\)
Vậy tập nghiệm của phương trình đã cho S = {-1 ; 1}
đặt t = 2x-1 ta được
x4-4x2t-12t2=0
x4-6x2t+2x2t-12t2=0
x2(x2-6t)+2t(x2-6t)=0
(x2-6t)(x2+2t)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2-6t=0\\x^2+2t=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x^2=6t\\x^2=-2t\end{cases}}\)
TH1 x2=6t \(\Leftrightarrow\)x2=6(2x-1) giải pt được x=6+\(\sqrt{30}\)hoặc x=6-\(\sqrt{30}\)
TH2 x2=-2t\(\Leftrightarrow\)x2=-2(2x-1) giải pt ta được x=-2+\(\sqrt{6}\)hoặc x=-2-\(\sqrt{6}\)
(2x + 1)\(\sqrt{x+2}\) = x2 + 2x + 2
<=> 2\(\sqrt{x+2}\) .x + \(\sqrt{x+2}\) = x2 + 2x + 2
<=> [\(\sqrt{x+2}\).(2x + 1)2] = (x2 + 2x + 2)2
<=> 4x3 +12x3 + 9x + 2 = x4 + 4x3 + 8x2 + 8x + 4
=> x = 1
ngủ đi bạn :) gần 12h rồi đấy
Ta giải đơn giản thế này thôi nhé :)
Điều kiện xác định của phương trình : \(x^2-2x\ge0\Leftrightarrow x\left(x-2\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\le0\\x\ge2\end{cases}}\)
Phương trình : \(x^2-1=2x\sqrt{x^2-2x}\)
\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-2x}+\left(x^2-2x\right)\right]-\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-2x}\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(1-\sqrt{x^2-2x}\right)\left(2x-\sqrt{x^2-2x}-1\right)=0\)
Đến đây xét từng trường hợp là ra :)
điều kiện: \(x^2-2x\ge0\Leftrightarrow\orbr{\begin{cases}x\ge2\\x\le0\end{cases}}\)
pt \(\Leftrightarrow\left(x^2-1\right)^2=4x^2\left(x^2-2x\right)\)
\(\Leftrightarrow x^4-2x^2+1=4x^4-8x^3\)
\(\Leftrightarrow4x^4-8x^3-x^4+2x^2-1=0\)
\(\Leftrightarrow3x^4-8x^3+2x^2-1=0\)
\(\Leftrightarrow\left(3x^2-2x+1\right)\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x^2-2x+1=0\\x^2-2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}VN\\x=1\left(L\right)\end{cases}}}\)
vậy phương trình vô nghiệm
a) => 5x^2 - 3 = 2 hoặc 5x^2 - 3 = -2
=> 5x^2 = 5 hoặc 5x^2 = 1
b) pt <=> l(x-1)^2l = x + 2
VÌ ( x - 1 )^2 >= 0 => l( x - 1 )^2 l = ( x- 1 )^2
pt <=> x^2 - 2x + 1 = x + 2 <=>
x^2 - 3x - 1 = 0
c) l2x-5l - l2x^2 - 7x + 5 l = 0
<=> l2x-5l - l ( 2x-5)(x-1) l = 0
<=> l2x-5l ( 1 - l x - 1 l = 0
<=> l 2x - 5 l = 0 hoặc 1 - l x - 1 l = 0
d); e lập bảng xét dấu sau đó xét ba trường hợ p ra
(2x2-x.)2-9+(2x2-x-3)=0
(2x2-x-3)(2x2-x+3)+(2x2-x-3.)=0
(2x2-x-3.)(2x2-x+4)=0
=> 2x2-x-3=0 (do. 2x2-x+4.>0)
=> 2x2-2-(x+1.)=0
=>2(x+1)(x-1)-(x+1)=0
=> (x+1)(2x-3)=0
=> x1=-1 ; x2=3/2
\(x^2-2x=2\sqrt{2x-1}\left(đk:x\ge0,5\right)\\ \Leftrightarrow x^4-4x^3+4x^2=4\left(2x-1\right)\\ \Leftrightarrow x^4-4x^3+4x^2=8x-4\\ \Leftrightarrow x^4-4x^3+4x^2-8x+4=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\left(tm\right)\\x=2-\sqrt{2}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{2-\sqrt{2};2+\sqrt{2}\right\}\)