Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. ĐKXĐ: $x\geq 4$
PT $\Leftrightarrow \sqrt{(x-4)+4\sqrt{x-4}+4}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-4}+2)^2}=2$
$\Leftrightarrow |\sqrt{x-4}+2|=2$
$\Leftrightarrow \sqrt{x-4}+2=2$
$\Leftrightarrow \sqrt{x-4}=0$
$\Leftrightarrow x=4$ (tm)
b. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$
$\Leftrightarrow |2x-1|=|x-3|$
\(\Rightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)
c.
PT \(\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 2x^2-2x+1=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x^2-2x=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ 2x(x-1)=0\end{matrix}\right.\Rightarrow x=1\)
a.
ĐKXĐ: \(x^2+2x-1\ge0\)
\(x^2+2x-1+2\left(x-1\right)\sqrt{x^2+2x-1}-4x=0\)
Đặt \(\sqrt{x^2+2x-1}=t\ge0\)
\(\Rightarrow t^2+2\left(x-1\right)t-4x=0\)
\(\Delta'=\left(x-1\right)^2+4x=\left(x+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=1-x+x+1=2\\t=1-x-x-1=-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\3x^2-2x+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=-1\pm\sqrt{6}\)
b.
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(2x^2+x-3+2x-\sqrt{5x-1}+2-\sqrt[3]{9-x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{\left(x-1\right)\left(4x-1\right)}{2x+\sqrt[]{5x-1}}+\dfrac{x-1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt[]{5x-1}}+\dfrac{1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}\right)=0\)
\(\Leftrightarrow x=1\) (ngoặc đằng sau luôn dương)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\\sqrt{x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a+2xb-2x-ab=0\\ \Leftrightarrow2x\left(b-1\right)-a\left(b-1\right)=0\\ \Leftrightarrow\left(2x-a\right)\left(b-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=a\\b=1\end{matrix}\right.\)
Với \(2x=a\Leftrightarrow x+3=4x^2\left(x\ge0\right)\Leftrightarrow x=1\left(tm\right)\)
Với \(b=1\Leftrightarrow x+1=1\Leftrightarrow x=0\left(tm\right)\)
Vậy PT có nghiệm \(x\in\left\{0;1\right\}\)
b)đk:\(x\ge\dfrac{1}{2}\)
Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)
\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)
=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\)
Dấu = xảy ra\(\Leftrightarrow x=1\)
Vậy....
c) đk: \(x\ge0\)
\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)
Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)
\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)
pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)
\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...
a)ĐKXĐ: x≥-1/3; x≤6
<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)
(vì x≥-1/3 nên3x+1≥0 )
\(DK:x\notin\left(0;2\right)\)
Dat \(\hept{\begin{cases}\sqrt{2x^2+1}=a\\\sqrt{x^2-2x}=b\end{cases}\left(a,b\ge0\right)}\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x^2-x+2}=b^2+x+2\\\sqrt{2x^2+x+3}=a^2+x+2\end{cases}}\)
PT tro thanh
\(a+b^2+x+2=a^2+x+2+b\)
\(\Leftrightarrow a^2-b^2+b-a=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)-\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a+b=1\left(2\right)\end{cases}}\)
PT(1)\(\Leftrightarrow\sqrt{2x^2+1}=\sqrt{x^2-2x}\)
\(\Leftrightarrow2x^2+1=x^2-2x\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\left(n\right)\)
PT(2)\(\Leftrightarrow\sqrt{2x^2+1}+\sqrt{x^2-2x}=1\)
\(\Leftrightarrow3x^2-2x+2\sqrt{\left(2x^2+1\right)\left(x^2-2x\right)}=0\)
\(\Leftrightarrow2\sqrt{2x^4-4x^3+x^2-2x}=2x-3x^2\)
\(\Leftrightarrow8x^4-16x^3+4x^2-8x=4x^2-12x^3+9x^4\)
\(\Leftrightarrow x^4+4x^3+8x=0\)
\(\Leftrightarrow x\left(x^3+4x^2+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^3+4x^2+8=0\end{cases}}\)
Cái PT \(x^3+4x^2+8=0\)có nghiệm nên mỉnh gọi là alpha nhé
Vay nghiem cua PT la \(x_1=-1;x_2=0;x_3=\alpha\)
Cau o duoi lam
\(DK:x\notin\left(0;2\right)\)
\(\Leftrightarrow3x^2-x+3+2\sqrt{\left(2x^2+1\right)\left(x^2-x+2\right)}=3x^2-x+3+2\sqrt{\left(x^2-2x\right)\left(2x^2+x+3\right)}\)
\(\Leftrightarrow2x^4-2x^3+5x^2-x+2=2x^4-3x^3+x^2-6x\)
\(\Leftrightarrow x^3+4x^2+5x+2=0\)
\(\Leftrightarrow\left(x^3+1\right)+\left(4x^2+5x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vay nghiem cua PT la \(x=-1;x=-2\)
\(ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow2x-2\sqrt{2x^2+5x-3}=1+x\sqrt{2x-1}-2x\sqrt{x+3}\\ \Leftrightarrow\left(2x-2\right)-\left(2\sqrt{2x^2+5x-3}-4\right)=\left(x\sqrt{2x-1}-x\right)-\left(2x\sqrt{x+3}-4x\right)-3x+3\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(2x^2+5x-7\right)}{\sqrt{2x^2+5x-3}+4}=\dfrac{x\left(2x-2\right)}{\sqrt{2x-1}+1}-\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}-3\left(x-1\right)\\ \Leftrightarrow2\left(x-1\right)-\dfrac{2\left(x-1\right)\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x\left(x-1\right)}{\sqrt{2x-1}+1}+\dfrac{2x\left(x-1\right)}{\sqrt{x+3}+4x}+3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left[2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}-\dfrac{2x}{\sqrt{2x-1}+2}+\dfrac{2x}{\sqrt{x+3}+4x}+3=0\left(1\right)\end{matrix}\right.\)
Với \(x\ge\dfrac{1}{2}\Leftrightarrow-\dfrac{2\left(2x+7\right)}{\sqrt{2x^2+5x-3}+4}>-\dfrac{2\cdot8}{4}=-4\)
\(-\dfrac{2x}{\sqrt{2x-1}+2}>-\dfrac{1}{2};\dfrac{2x}{\sqrt{x+3}+4x}>0\)
Do đó \(\left(1\right)>2-4-\dfrac{1}{2}+3=\dfrac{1}{2}>0\) nên (1) vô nghiệm
Vậy PT có nghiệm duy nhất \(x=1\)
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}
ĐK: \left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}ĐK:
\left\{{}\begin{matrix}\left(x+2\right)\left(x+3\right)\ge0\\x^2+5x-36\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4\\x\le-9\end{matrix}\right.{(x+2)(x+3)≥0x2+5x−36≥0⇔[x≥4x≤−9
pt\Leftrightarrow\sqrt{x^2+5x+6}=x^2+5x-36pt⇔x2+5x+6=x2+5x−36
Đặt \sqrt{x^2+5x+6}=t\left(t\ge0\right)x2+5x+6=t(t≥0) , phương trình trở thành:
t=t^2-42\Leftrightarrow t^2-t-42=0\Leftrightarrow\left(t+6\right)\left(t-7\right)=0t=t2−42⇔t2−t−42=0⇔(t+6)(t−7)=0
\Leftrightarrow\left[{}\begin{matrix}t=-6\left(ktmđk\right)\\t=7\end{matrix}\right.⇔[t=−6(ktmđk)t=7
Với t=7\Rightarrow\sqrt{x^2+5x+6}=7\Rightarrow x^2+5x+6=49t=7⇒x2+5x+6=7⇒x2+5x+6=49
\Rightarrow x^2+5x-43=0⇒x2+5x−43=0
\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-5+\sqrt{197}}{2}\\x=\dfrac{-5-\sqrt{197}}{2}\end{matrix}\right.\left(tmđk\right)⇔⎣⎢⎢⎡x=2−5+197x=2−5−197(tmđk)
Vậy phương trình có tập nghiệm S=\left\{\dfrac{-5+\sqrt{197}}{2};\dfrac{-5-\sqrt{197}}{2}\right\}S={2−5+197;2−5−197}