Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình hướng dẫn nhé :)
- Phương trình \(\sqrt{x-2\sqrt{x}+1}=\sqrt{x}-1\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}=\sqrt{x}-1\Leftrightarrow\left|\sqrt{x}-1\right|=\sqrt{x}-1\)
Xét trường hợp để tìm nghiệm nhé :)
- \(\sqrt{4x^2-4x+1}=1-2x\Leftrightarrow\sqrt{\left(2x-1\right)^2}=1-2x\Leftrightarrow\left|2x-1\right|=1-2x\)
- \(\sqrt{x+2\sqrt{x-1}}=3\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=3\Leftrightarrow\left|\sqrt{x-1}+1\right|=3\) (mình sửa lại đề)
- \(\sqrt{x^2-4}=\sqrt{x^2-2x}\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x\left(x-2\right)}\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x}\right)=0\)
- \(\sqrt{x^2+5}=x+1\). Tìm điều kiện xác định rồi bình phương hai vế.
1 câu hỏi post 2 câu thôi là chán rồi ==" bạn gắng post lại từng câu 1 mình làm cho nhé :v
nếu vế phải là \(2\sqrt{2}\)thì làm như này:
Ta có: \(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)
\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\) (bình phương cả 2 vế rùi khai triển dựa trên hằng đẳng thức)
\(\Leftrightarrow2x+2x-2=8\Leftrightarrow4x=10\Leftrightarrow x=\frac{2}{5}\)
ĐKXĐ:\(x\ge\frac{1}{2}\)
Khi đó pt đã cho
\(\Leftrightarrow x-\sqrt{2x-1}+x+\sqrt{2x-1}\)+\(2\sqrt{\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)}=8\)
\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=8\)
\(\Leftrightarrow x+\sqrt{\left(x-1\right)^2}=4\)
\(\Leftrightarrow x+|x-1|=4\) (1)
TH1:\(\frac{1}{2}\le x< 1\)
Khi đó pt (1)\(\Leftrightarrow x+1-x=4\)
\(\Leftrightarrow1=4\)(Vô lý)
TH2 :x\(\ge1\)
Khi đó pt (1) \(\Leftrightarrow x+x-1=4\)
\(\Leftrightarrow2x=5\)
\(\Leftrightarrow x=\frac{5}{2}\)(tm ĐKXĐ)
Vậy pt đã cho có tập nghiệm S=(\(\frac{5}{2}\))
\(\sqrt{\sqrt{2}-1-x}+\sqrt[4]{x}=\frac{1}{\sqrt[4]{2}}\)
ĐKXĐ: Tự tìm nhé.
\(\left(\sqrt{\sqrt{2}-1-x};\sqrt[4]{x}\right)\rightarrow\left(b;a\right)\)
Phương trình <=> \(\hept{\begin{cases}a+b=\frac{1}{\sqrt[4]{2}}\\a^4+b^2=\sqrt{2}-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=\frac{1}{\sqrt[4]{2}}-a\\a^4+b^2=\sqrt{2}-1\left(2\right)\end{cases}}\)
(2) <=> \(a^4+a^2-\frac{2}{\sqrt[4]{2}}a+\frac{1}{\sqrt{2}}-\sqrt{2}+1=0\)
\(\Leftrightarrow\sqrt{2}a^4+\sqrt{2}a^2-2\sqrt[4]{2}a+\sqrt{2}-1=0\)
\(\Leftrightarrow\left(a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}\right)\left(\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}\right)=0\)
\(\Leftrightarrow a^2-a+\frac{\sqrt{2}-\sqrt[4]{2}}{\sqrt{2}}=0\)( vì \(\Leftrightarrow\sqrt{2}a^2+\sqrt{2}a+2\sqrt{2}+\sqrt[4]{2}-\sqrt{2}>0\))
Tự làm tiếp nhé
ĐK: \(x\ge\frac{1}{2}\)
\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)
\(\Leftrightarrow\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)+2\left(2-x\right)\left(2+x\right)=\left(\sqrt{2x-1}-\sqrt{3}\right)\)
\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)=\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}\)
\(\Leftrightarrow\frac{2\left(2-x\right)}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2-x\right)\left(2+x\right)+\frac{2\left(2-x\right)}{\sqrt{2x-1}+\sqrt{3}}=0\)
\(\Leftrightarrow\left(2-x\right)\left[\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\sqrt{2+x}+\frac{2}{\sqrt{2x-1}+\sqrt{3}}\right]=0\)
\(\Leftrightarrow x=2\)( \(\frac{2}{\sqrt{\left(x+7\right)\left(x+1\right)}+\sqrt{3}\left(x+1\right)}+2\left(2+x\right)+\frac{2}{\sqrt{2x-1}+\sqrt{3}}>0\))
KL:...
\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)(ĐK:\(x>\frac{1}{2}\))
\(\Leftrightarrow x^2+2x+2x-1+2\sqrt{\left(x^2+2x\right)\left(2x-1\right)}=3x^2+4x+1\)(BP 2 vế)
\(\Leftrightarrow2\sqrt{2x^3-x^2+4x^2-2x}=2x^2+2\)
\(\Leftrightarrow\sqrt{2x^3+2x+3x^2+3-4x-3}=x^2+1\)
Đặt \(x^2+1=t\)
pt\(\Leftrightarrow\sqrt{2xt+3t-\left(4x+3\right)}=t\)
\(\Leftrightarrow2xt+3t-4x-3=t^2\)
\(\Leftrightarrow t^2-t\left(2x+3\right)+4x+3=0\)
\(\Delta=\left(2x+3\right)^2-4.\left(4x+3\right)=4x^2+12x+9-16x-12=4x^2-4x-3\)
\(\hept{\begin{cases}t_1=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\\t_2=\frac{2x+3+\sqrt{4x^2-4x-3}}{2}\end{cases}}\)
TH1:\(t=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\)
\(\Rightarrow2x^2+2=2x+3-\sqrt{4x^2-4x-3}\)
\(\Leftrightarrow2x^2+2=2x+3-\sqrt{4x^2+4x-8x-3}\)
\(\Leftrightarrow2t=2x+3-\sqrt{4t-8x-3}\)
Giải ra rồi thay TH2
ĐKXĐ : \(x\ge\frac{1}{2}\)
\(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}=2\sqrt{2}\)
\(\Leftrightarrow\)\(\left(\sqrt{x-\sqrt{2x-1}}+\sqrt{x+\sqrt{2x-1}}\right)^2=\left(2\sqrt{2}\right)^2\)
\(\Leftrightarrow\)\(x-\sqrt{2x-1}+2\sqrt{\left(x-\sqrt{2x-1}\right)\left(x+\sqrt{2x-1}\right)}+x+\sqrt{2x-1}=8\)
\(\Leftrightarrow\)\(x+\sqrt{x^2-2x+1}=4\)
\(\Leftrightarrow\)\(x+\left|x-1\right|=4\)
+) Với \(\hept{\begin{cases}x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có :
\(x+x-1=4\)
\(\Leftrightarrow\)\(x=\frac{5}{2}\) ( thỏa mãn )
Với \(\hept{\begin{cases}x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 0\\x< 1\end{cases}\Leftrightarrow}x< 0}\) ta có :
\(-x-x+1=4\)
\(\Leftrightarrow\)\(x=\frac{-3}{2}\) ( ko thỏa mãn ĐKXĐ )
Vậy \(x=\frac{5}{2}\)
Chúc bạn học tốt ~