K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

\(x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\)

Ta có: \(x^2+2x+17=(x^2+2x+1)+16=\left(x+1\right)^2+16\ge16\)

\(\Rightarrow\sqrt{x^2+2x+17}\ge\sqrt{16}=4\)

\(\Rightarrow x^4+4x^3+6x^2+4x+\sqrt{x^2+2x+17}=3\ge x^4+4x^3+6x^2+4x+4\)

\(\Leftrightarrow x^4+4x^3+6x^2+4x+1\le0\)

\(\Leftrightarrow\left(x+1\right)^4\le0\)

Mà \(\left(x+1\right)^4\ge0\Rightarrow(x+1)^4=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Thử lại ta thấy x=-1 thỏa mãn bài toán

Vậy, pt có nghiệm duy nhất là x=-1

NV
2 tháng 9 2021

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

\(x^2+2=\sqrt{\left(2x+3\right)\left(2x^2-2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{2x^2-2x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2+b^2=2x^2+4=2\left(x^2+2\right)\)

Phương trình trở thành:

\(\dfrac{a^2+b^2}{2}=ab\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{2x^2-2x+1}=\sqrt{2x+3}\)

\(\Leftrightarrow2x^2-2x+1=2x+3\)

\(\Leftrightarrow x^2-2x-1=0\)

\(\Leftrightarrow...\)

2 tháng 9 2021

Sai ở dòng 3 (kể từ bài làm) ạ. Xem lại dấu giúp em ạ.

12 tháng 12 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\\sqrt{x+1}=b\end{matrix}\right.\left(a,b\ge0\right)\)

\(PT\Leftrightarrow a+2xb-2x-ab=0\\ \Leftrightarrow2x\left(b-1\right)-a\left(b-1\right)=0\\ \Leftrightarrow\left(2x-a\right)\left(b-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=a\\b=1\end{matrix}\right.\)

Với \(2x=a\Leftrightarrow x+3=4x^2\left(x\ge0\right)\Leftrightarrow x=1\left(tm\right)\)

Với \(b=1\Leftrightarrow x+1=1\Leftrightarrow x=0\left(tm\right)\)

Vậy PT có nghiệm \(x\in\left\{0;1\right\}\)

11 tháng 1 2022

Scp  iiaoskkkak

11 tháng 1 2022
Not biếtmdnhdhd
11 tháng 1 2022

Hummmm

20 tháng 11 2023

\(x^2-2x+3=2\sqrt{2x^2-4x+3}\left(x\in R\right)\)

\(\Leftrightarrow x^2-2x+3=2\sqrt{2x^2-4x+6-3}\)

\(\Leftrightarrow x^2-2x+3=2\sqrt{2\left(x^2-2x+3\right)-3}\)

Đặt: \(t=x^2-2x+3\)

Phương trình trở thành:

\(\Rightarrow t=2\sqrt{2t-3}\) \(\left(t\ge\dfrac{3}{2}\right)\) 

\(\Leftrightarrow t^2=4\left(2t-3\right)\)

\(\Leftrightarrow t^2=8t-12\)

\(\Leftrightarrow t^2-8t+12=0\)

\(\Leftrightarrow\left(t-2\right)\left(t-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=6\end{matrix}\right.\) (tm) 

+) Với \(t=2\)

\(\Leftrightarrow x^2-2x+3=2\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

+) Với \(t=6\)

\(\Leftrightarrow x^2-2x+3=6\)

\(\Leftrightarrow x^2-2x+3-6=0\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

Vậy: \(S=\left\{1;-1;3\right\}\)

20 tháng 11 2023

�2−2�+3=22�2−4�+3(�∈�)

⇔�2−2�+3=22�2−4�+6−3

⇔�2−2�+3=22(�2−2�+3)−3

Đặt: �=�2−2�+3

Phương trình trở thành:

⇒�=22�−3 

25 tháng 6 2021

a)\(x^3+x^2+x=-\dfrac{1}{3}\)

\(\Leftrightarrow3x^3+3x^2+3x=-1\)

\(\Leftrightarrow\left(x+1\right)^3=-2x^3\)

\(\Leftrightarrow x+1=\sqrt[3]{-2}x\)

\(\Leftrightarrow x=-\dfrac{1}{1+\sqrt[3]{2}}\)

b) \(x^3+2x^2-4x=-\dfrac{8}{3}\)

\(\Leftrightarrow3x^3+6x^2-12x+8=0\)

\(\Leftrightarrow4x^3-\left(x^3-6x^2+12x-8\right)=0\)

\(\Leftrightarrow4x^3=\left(x-2\right)^3\)

\(\Leftrightarrow\sqrt[3]{4}x=x-2\)

\(\Leftrightarrow x=\dfrac{2}{1-\sqrt[3]{4}}\)

Thêm cái icon tặng cho người xong trước, chứ toi đang ức chế vc

25 tháng 6 2021

Icon hihi này này,mấy người đánh máy nhanh quá làm toi phải bỏ đi mấy bài :), mà mấy bài dài vc chứ ngắn gì đâu

15 tháng 3 2020

Các bước làm:

Thử nghiệm: x = 2 là nghiệm 

------> Thử xem các cách làm tất nhiên là không thể bình phương  -----> Như vậy thường thì cô sẽ nghĩ ra hai cách là liên hợp và đặt ẩn phụ

+) Cách liên hợp: Căn đầu tiên thay 2 vào kết quả 1 ; căn thứ 2 thay 2 vào đc kết quả là 3

-----------------------------------------------------------------------------------------------------------------------

Giải: ĐK: \(1\le x\le3\) ( không cần thiết phải giải luôn điều kiện ra như thế nhé!

 \(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)

<=> \(\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x^3-4x^2+4x+4-4\)

<=> \(\frac{-\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{-2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\) ( hình như là đẹp)

<=> \(\left(x-2\right)^2\left[x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}\right]=0\)( cái trong ngoặc vuông rõ ràng là > 0 với mọi  \(1\le x\le3\))

<=> x - 2 = 0 

<=> x = 2 thỏa mãn đk