\(x^2+2=\sqrt{3-4x+2x^2+4x^3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 9 2021

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

\(x^2+2=\sqrt{\left(2x+3\right)\left(2x^2-2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{2x^2-2x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2+b^2=2x^2+4=2\left(x^2+2\right)\)

Phương trình trở thành:

\(\dfrac{a^2+b^2}{2}=ab\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{2x^2-2x+1}=\sqrt{2x+3}\)

\(\Leftrightarrow2x^2-2x+1=2x+3\)

\(\Leftrightarrow x^2-2x-1=0\)

\(\Leftrightarrow...\)

2 tháng 9 2021

Sai ở dòng 3 (kể từ bài làm) ạ. Xem lại dấu giúp em ạ.

15 tháng 3 2020

Các bước làm:

Thử nghiệm: x = 2 là nghiệm 

------> Thử xem các cách làm tất nhiên là không thể bình phương  -----> Như vậy thường thì cô sẽ nghĩ ra hai cách là liên hợp và đặt ẩn phụ

+) Cách liên hợp: Căn đầu tiên thay 2 vào kết quả 1 ; căn thứ 2 thay 2 vào đc kết quả là 3

-----------------------------------------------------------------------------------------------------------------------

Giải: ĐK: \(1\le x\le3\) ( không cần thiết phải giải luôn điều kiện ra như thế nhé!

 \(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)

<=> \(\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x^3-4x^2+4x+4-4\)

<=> \(\frac{-\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{-2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\) ( hình như là đẹp)

<=> \(\left(x-2\right)^2\left[x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}\right]=0\)( cái trong ngoặc vuông rõ ràng là > 0 với mọi  \(1\le x\le3\))

<=> x - 2 = 0 

<=> x = 2 thỏa mãn đk

29 tháng 5 2020

ĐKXĐ : ....

PT \(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)

\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+1}+3}=x\left(x-2\right)^2\)

\(\Leftrightarrow\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}+x\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}+x>0\left(loai\right)\end{cases}}\)

23 tháng 8 2020

Bạn Thanh Tùng DZ ơi sao trường hợp 2 lại loại vậy

Chưa có điều kiện của x mà

16 tháng 4 2020

Điều kiện 1 =<x=<3

\(\sqrt{-x^2+4x-3}+\sqrt{-2x^2+8x+1}=x^3-4x^2+4x+4\)

\(\Leftrightarrow\sqrt{-x^2+4x-3}-1+\sqrt{-2x^2+8x+1}-3=x\left(x^2-4x+4\right)\)

\(\Leftrightarrow\frac{-x^2+4x-4}{\sqrt{-x^2+4x-3}+1}+\frac{-2x^2+8x-8}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)

\(\Leftrightarrow x\left(x-2\right)^2+\frac{\left(x-2\right)^2}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+x}+3}=x\left(x-2\right)^2\)

\(\Leftrightarrow\left(x-2\right)^2\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2\left(x-2\right)^2}{\sqrt{-2x^2+8x+1}+3}\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\left(x+\frac{1}{\sqrt{-x^2+4x-3}+1}+\frac{2}{\sqrt{-2x^2+8x+1}+3}>0\right)\)

<=> x=2(tmđk)

14 tháng 10 2019

\(a,\sqrt{x^2-4x+4}=\sqrt{4+2\sqrt{3}}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{3+2\sqrt{3}+1}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(\Leftrightarrow\left|x-2\right|=\sqrt{3}+1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=\sqrt{3}+1\\2-x=\sqrt{3}+1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+3\\x=1-\sqrt{3}\end{cases}}}\)

Vậy...

\(b,\sqrt{3x^2-4x}=2x-3.ĐKXĐ:x\le0,\frac{4}{3}\le x\)

\(\Leftrightarrow3x^2-4x=\left(2x-3\right)^2\)

\(\Leftrightarrow3x^2-4x=4x^2-12x+9\)

\(\Leftrightarrow4x^2-3x^2-12x+4x+9=0\)

\(\Leftrightarrow x^2-8x+9=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4+\sqrt{7}\\x=4-\sqrt{7}\end{cases}}\)(t/m ĐKXĐ)

14 tháng 10 2019

\(\sqrt{\left(x-2\right)^2}\)=\(|\sqrt{3}+1|\)
giải 2 th
phần b bình phương cả hai vế

18 tháng 10 2019

4x-2,2x,\(\sqrt{x+3}+x+3+2x-1-2\sqrt{2x-1}+1=0< =>\)

(\(\left(2x-\sqrt{x-3}\right)^2+\left(\sqrt{2x-1}-1\right)^2=0\)<=> \(\hept{\begin{cases}\sqrt{2x-1}=1\\2x=\sqrt{x-3}\end{cases}< =>\hept{\begin{cases}x=1\\4x^2=x-3\end{cases}}}\)(vô nghiệm)

20 tháng 7 2019

\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\left(x\ge-\frac{1}{4}\right)\)

\(\Leftrightarrow2\left(x+2\right)-1+\sqrt{\left(x+2\right)\left(4x+1\right)}=2\sqrt{x+2}+\sqrt{4x+1}\)

\(\Leftrightarrow4\left(x+2\right)-2+2\sqrt{x+2}.\sqrt{4x+1}=4\sqrt{x+2}+2\sqrt{4x+1}\)

Đặt \(\hept{\begin{cases}2\sqrt{x+2}=a\left(a\ge0\right)\\\sqrt{4x+1}=b\left(b\ge0\right)\end{cases}\Rightarrow}a^2-b^2=4\left(x+2\right)-4x-1=7\)\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=7\)(1)

\(pt:a^2-2+ab=2a+2b\)

\(\Leftrightarrow a\left(a+b\right)-2\left(a+b\right)=2\)

\(\Leftrightarrow\left(a-2\right)\left(a+b\right)=2\)(2)

Nhân chéo 2 vế của (1) với (2) được

\(7\left(a-2\right)\left(a+b\right)=2\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow7\left(a-2\right)=2\left(a-b\right)\left(Do\left(a+b\right)>0\right)\)

\(\Leftrightarrow7a-14=2a-2b\)

\(\Leftrightarrow5a=14-2b\)

\(\Leftrightarrow10\sqrt{x+2}=14-2\sqrt{4x+1}\)

\(\Leftrightarrow5\sqrt{x+2}=7-\sqrt{4x+1}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x+1}\le7\\25\left(x+2\right)=49-14\sqrt{4x+1}+4x+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}0\le4x+1\le49\\21x=-14\sqrt{4x+1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\441x^2=196\left(4x+1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\441x^2-784x-196=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{4}\le x\le0\\49\left(9x+2\right)\left(x-2\right)=0\end{cases}}\)

\(\Leftrightarrow x=-\frac{2}{9}\left(TmĐKXĐ\right)\)

Vậy

22 tháng 7 2019

Incursion_03 em thử nha, sai thì thôi ạ, em hơi nghiện liên hợp r.

ĐK: x>=-1/4

PT \(\Leftrightarrow2x+\frac{31}{9}+\sqrt{4x^2+9x+2}-\frac{4}{9}=2\sqrt{x+2}-\frac{8}{3}+\sqrt{4x+1}-\frac{1}{3}+3\)

\(\Leftrightarrow2\left(x+\frac{2}{9}\right)+\frac{\left(x+\frac{2}{9}\right)\left(4x+\frac{73}{9}\right)}{\sqrt{4x^2+9x+2}+\frac{4}{9}}=\frac{4\left(x+\frac{2}{9}\right)}{2\sqrt{x+2}+\frac{8}{3}}+\frac{4\left(x+\frac{2}{9}\right)}{\sqrt{4x+1}+\frac{1}{3}}\)

\(\Leftrightarrow\left(x+\frac{2}{9}\right)\left[2+\frac{4x+\frac{73}{9}}{\sqrt{4x^2+9x+2}+\frac{4}{9}}-4\left(\frac{1}{2\sqrt{x+2}+\frac{8}{3}}+\frac{1}{\sqrt{4x+1}+\frac{1}{3}}\right)\right]=0\)

Cái ngoặc to em chịu:( đang suy nghĩ

22 tháng 6 2017

1) Bình phương 2 vế của pt, ta được:

\(x^2-4x+9=9\)

<=> \(x^2-4x=0\)

<=>x(x-4) = 0

<=>\(\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

2) Bình phương 2 vế của pt được:

\(x^2-2x-3=4x^2+12x+9\)

\(-3x^2-14x-12=0\)

Áp dụng công thức nghiệm, giải được x

22 tháng 6 2017

Cái đó mình biết làm rồi bạn giúp mình tìm điều kiện nha....