![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-4\right)^4+\left(x-2\right)^4=82\)
\(\left(y-1\right)^4+\left(y+1\right)^4=82\\ \)
\(\left(y^4-4y^3+6y^2-4y+1\right)+\left(y^4+4y^3+6y^2+4y+1\right)=82\)
\(2y^4+12y^2+2=82\)
\(z^2+6z-40=0\Rightarrow\orbr{\begin{cases}z=-10\left(loai\right)\\z=4\end{cases}}\)
Z=4=> \(z=4\Rightarrow\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-2\Rightarrow x=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a:
Đặt \(x-1=a\)thì pt trở thành \(\left(a+2\right)^4+\left(a-2\right)^4=82\), phá ra rồi giải pt tích
![](https://rs.olm.vn/images/avt/0.png?1311)
đặt y=x+2, rút gọn ta có
\(2y^4\)+ \(12y^2\)+ \(2=82\)
<=> \(y^4+6y^2-40=0\)
đặt \(y^2=z>0\)ta có \(z^2+6z-40=0\)suy ra \(\left(z+3\right)^2-49=0\)
<=> z+3=7(để z>0) <=> z=4
Vậy phương trình có tập nghiệm là.......(bạn tự tính nốt nhé)
![](https://rs.olm.vn/images/avt/0.png?1311)
Những bài như thế này thì em chỉ cần nhớ hai điều:
+)Thứ nhất: \(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+a^4\)
+) Thứ hai : \(\left(-\frac{1}{2}+\frac{3}{2}\right):2=\frac{1}{2}\)
Giải:
Đặt : x = \(t-\frac{1}{2}\)
Ta có pt: \(\left(t-1\right)^4+\left(t+1\right)^4=82\)
<=> \(\left(t^4-4t^3+6t^2-4t+1\right)+\left(t^4+4t^3+6t^2+4t+1\right)=82\)
<=> \(2t^4+12t^2+2=82\)
<=> \(t^4+6t^2-40=0\)
<=> \(t^4+2.t^2.3+9=49\)
<=> \(\left(t^2+3\right)^2=7^2\)
<=> \(\orbr{\begin{cases}t^2+3=7\\t^2+3=-7\left(loai\right)\end{cases}}\)
<=> \(t^2=4\)
<=> \(t=\pm2\)
Với t = 2 ta có: \(x=2-\frac{1}{2}=\frac{3}{2}\)
Với t = -2 ta có: \(x=-2-\frac{1}{2}=-\frac{5}{2}\)
Vậy:
#Cô chi oi hình như phải đặt
\(x=t+\frac{1}{2}\)mới ra được như này \(\left(t-1\right)\left(t+1\right)\) chứ cô
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\left(x-1\right)^4+\left(5-x\right)^4=1^4+3^4\)
\(\Rightarrow\hept{\begin{cases}x-1=2\\5-x=3\end{cases}}\)hoặc\(\Rightarrow\hept{\begin{cases}x-1=3\\5-x=1\end{cases}}\)
\(\Rightarrow x=2\)hoặc\(\Rightarrow x=4\)
Vậy, \(\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
\(\left(x-1\right)^4+\left(5-x\right)^4=82\)
\(\Leftrightarrow\left(x-1\right)^4+\left(x-5\right)^4=82\)
Đặt \(x-3=y\Rightarrow x=y+3\)
Thay \(x=y+3\)vào phương trình. Ta có:
\(\left(y+2\right)^4+\left(y-2\right)^4=82\)
\(\Leftrightarrow y^4+8y^3+24y^2+32y+16+y^4-8y^3+24y^2-32y+16=82\)
\(\Leftrightarrow2y^4+48y^2+32=82\)
\(\Leftrightarrow2y^4+48y^2+32-82=0\)
\(\Leftrightarrow2y^4+48y^2-50=0\)
\(\Leftrightarrow2\left(y^2-1\right)\left(y^2+25\right)=0\)
\(\Leftrightarrow2\left(y-1\right)\left(y+1\right)\left(y^2+25\right)=0\)
\(\orbr{\begin{cases}\orbr{\begin{cases}y-1=0\\y+1=0\end{cases}}\\y^2+25=0\left(y^2+25\ge25>0\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)\(\Rightarrow y=1\)hoặc \(y=-1\)
Nếu \(y=1\Rightarrow x=4\)
Nếu\(y=-1\Rightarrow x=2\)
Vậy x=4 hoặc x=2
Đặt \(x-3=t\)
\(\Rightarrow\left(t-1\right)^4+\left(t+1\right)^4-82=0\)
\(\Leftrightarrow2t^4+12t^2-80=0\)
\(\Rightarrow\left[{}\begin{matrix}t^2=4\\t^2=-10\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=2\\t=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)