Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+3)4+(x+5)4=16
<=>(x+3)4+(x+5)4=04+24
TH1: \(\left\{{}\begin{matrix}x+3=0\\x+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\)
TH2:\(\left\{{}\begin{matrix}x+3=2\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)(loại)
b)(x-2)4+(x-3)4=1=04+14
TH1: \(\left\{{}\begin{matrix}x-2=0\\x-3=1\end{matrix}\right.\)loại
TH2: \(\left\{{}\begin{matrix}x-2=1\\x-3=0\end{matrix}\right.\)=>x=3.
c)(x+1)4+(x-3)4=82=34+(-1)4
làm tương tự => x=2.
d) làm tương tự câu b
Những bài như thế này thì em chỉ cần nhớ hai điều:
+)Thứ nhất: \(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+a^4\)
+) Thứ hai : \(\left(-\frac{1}{2}+\frac{3}{2}\right):2=\frac{1}{2}\)
Giải:
Đặt : x = \(t-\frac{1}{2}\)
Ta có pt: \(\left(t-1\right)^4+\left(t+1\right)^4=82\)
<=> \(\left(t^4-4t^3+6t^2-4t+1\right)+\left(t^4+4t^3+6t^2+4t+1\right)=82\)
<=> \(2t^4+12t^2+2=82\)
<=> \(t^4+6t^2-40=0\)
<=> \(t^4+2.t^2.3+9=49\)
<=> \(\left(t^2+3\right)^2=7^2\)
<=> \(\orbr{\begin{cases}t^2+3=7\\t^2+3=-7\left(loai\right)\end{cases}}\)
<=> \(t^2=4\)
<=> \(t=\pm2\)
Với t = 2 ta có: \(x=2-\frac{1}{2}=\frac{3}{2}\)
Với t = -2 ta có: \(x=-2-\frac{1}{2}=-\frac{5}{2}\)
Vậy:
#Cô chi oi hình như phải đặt
\(x=t+\frac{1}{2}\)mới ra được như này \(\left(t-1\right)\left(t+1\right)\) chứ cô
chẳng ai giải, thôi mình giải vậy!
a) Đặt \(y=x^2+4x+8\),phương trình có dạng:
\(t^2+3x\cdot t+2x^2=0\)
\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)
\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}
b) nhân 2 vế của phương trình với 12 ta được:
\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)
Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)
giải tiếp ra ta sẽ được S={-2/3;-5/3}
c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
S={3;5}
d)s={1}
e) S={1;-2;-1/2}
f) phương trình vô nghiệm
Đặt \(u=x^2-x\)
Phương trình trở thành \(u^2-4u+4=0\)
\(\Leftrightarrow\left(u-2\right)^2=0\)
\(\Leftrightarrow u-2=0\)
\(\Rightarrow x^2-x=2\)
\(\Rightarrow x^2-x-2=0\)
Ta có \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1+3}{2}=2\\x=\frac{1-3}{2}=-1\end{cases}}\)
Đặt \(2x+1=w\)
Phương trình trở thành \(w^2-w=2\)
\(\Rightarrow\orbr{\begin{cases}w=2\\w=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=2\\2x+1=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)
Ta có :
\(\left(x-1\right)^4+\left(5-x\right)^4=1^4+3^4\)
\(\Rightarrow\hept{\begin{cases}x-1=2\\5-x=3\end{cases}}\)hoặc\(\Rightarrow\hept{\begin{cases}x-1=3\\5-x=1\end{cases}}\)
\(\Rightarrow x=2\)hoặc\(\Rightarrow x=4\)
Vậy, \(\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
\(\left(x-1\right)^4+\left(5-x\right)^4=82\)
\(\Leftrightarrow\left(x-1\right)^4+\left(x-5\right)^4=82\)
Đặt \(x-3=y\Rightarrow x=y+3\)
Thay \(x=y+3\)vào phương trình. Ta có:
\(\left(y+2\right)^4+\left(y-2\right)^4=82\)
\(\Leftrightarrow y^4+8y^3+24y^2+32y+16+y^4-8y^3+24y^2-32y+16=82\)
\(\Leftrightarrow2y^4+48y^2+32=82\)
\(\Leftrightarrow2y^4+48y^2+32-82=0\)
\(\Leftrightarrow2y^4+48y^2-50=0\)
\(\Leftrightarrow2\left(y^2-1\right)\left(y^2+25\right)=0\)
\(\Leftrightarrow2\left(y-1\right)\left(y+1\right)\left(y^2+25\right)=0\)
\(\orbr{\begin{cases}\orbr{\begin{cases}y-1=0\\y+1=0\end{cases}}\\y^2+25=0\left(y^2+25\ge25>0\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)\(\Rightarrow y=1\)hoặc \(y=-1\)
Nếu \(y=1\Rightarrow x=4\)
Nếu\(y=-1\Rightarrow x=2\)
Vậy x=4 hoặc x=2