Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>\(\left(\dfrac{x+1}{2021}+1\right)+\left(\dfrac{x+2}{2020}+1\right)+\left(\dfrac{x+3}{2019}+1\right)+\left(\dfrac{x+2028}{2}-3\right)=0\)
=>x+2022=0
=>x=-2022
a) \(3\left(2x-x\right)=5x+1\)
\(\Leftrightarrow6x-3x=5x+1\)
\(\Leftrightarrow6x-3x-5x=1\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\dfrac{1}{-2}=-\dfrac{1}{2}\)
b) \(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}+\dfrac{x+3}{2019}+\dfrac{x+4}{2018}=0\)
\(\Leftrightarrow\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)
\(\Leftrightarrow\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)
\(\Leftrightarrow\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2018}\right)\)
\(\Leftrightarrow x+2022=0\)
\(\Leftrightarrow x=-2022\)
\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}=\dfrac{x+3}{2019}+\dfrac{x+4}{2018}\)
=>\(\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)
=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)
=> (x+2022)(\(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\))=0
=>x+2022=0
=> x=-2022
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
2b,
Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp
Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt
vô đây đọc nhé
Bài làm:
Ta có: \(2020^x\)chẵn với mọi x mà 2021 lẻ
=> \(x^{2020+x}\)lẻ
Xét: x = 1 => 2020 +1 =2021 (hợp lý)
Vậy x = 1 thỏa mãn
Xét: x > 1 => 2020x > 2021 (vô lý)
Xét: x < 1 => 2020x < 2020 và x2020+x < 0
=> 2020x + x2020+x < 2021 (vô lý)
Vậy x = 1
\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+....+\dfrac{1}{\left(x+2020\right)\left(x+2021\right)=1}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+...+\dfrac{1}{x+2020}-\dfrac{1}{x+2021}=1\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2021}=1\)
\(\Leftrightarrow\dfrac{\left(x+2021\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2021\right)}=1\)
\(\Leftrightarrow\dfrac{x+2021-x-1}{\left(x+1\right)\left(x+2021\right)}=1\)
\(\Leftrightarrow\dfrac{2020}{\left(x+1\right)\left(x+2021\right)}=1\)
\(\Leftrightarrow\left(x+1\right)\left(x+2021\right)=2020\)
\(\Leftrightarrow x^2+2021x+x+2021=2020\)
\(\Leftrightarrow x^2+2022x=-1\)
\(\Leftrightarrow x\left(x+2022\right)=-1\)
Đến đây bạn chia trường hợp để giaỉ ra nghiệm nguyên nhé
Ta có: VT = \(\dfrac{x+1}{2021}\)+1 - (\(\dfrac{x+2}{2020}\)+1) = \(\dfrac{x+3}{2019}\)+1=VP
=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}-\dfrac{x+2022}{2019}=0\)
=>\(\left(x+2022\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}\right)=0\)
=>x +2022 = 0=> x =-2022
Áp dụng BĐT trị tuyệt đối:
\(M=\left|x-2019\right|+\left|2021-x\right|+2020\left|x-2020\right|\)
\(M\ge\left|x-2019+2021-x\right|+2020\left|x-2020\right|=2+2020\left|x-2020\right|\ge2\)
\(\Rightarrow M_{min}=2\) khi \(\left\{{}\begin{matrix}\left(x-2019\right)\left(2021-x\right)\ge0\\\left|x-2020\right|=0\end{matrix}\right.\) \(\Rightarrow x=2020\)
Xét x < 2019 => x-2020 < -1 => |x-2020|^2021 > 1. Mà |x-2019|^2020 > hoặc = 0 nên đề bài > 1 (loại)
Xét x= 2019 => đề bài = 1 (thỏa mãn)
Xét 2019 < x < 2020 => 0< x-2019 < 1; -1 < x-2020 < 0 => 0 < |x-2019|,|x-2020| < 1
=> |x-2019|^2020 < |x-2019|; |x-2020|^2021 < |x-2020|
=> Đề bài < |x-2019|+|x-2020| = |x-2019| + |2020-x| < hoặc = |(x-2019)+(2020-x)| = 1 <=> đề bài < 1 (loại)
Xét x = 2020 => Đề vàu = 1 (thỏa mãn)
Xét x > 2020 => x-2019 > 1 => |x-2019|^2020 > 1. Mà |x-2020|^2021 > hoặc = 0 => Đề bài > 1 (loại)
Vậy x = 2019 hoặc x = 2020